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ABSTRACT

In this paper, we characterize the performance of HD video stream-
ing in 802.11n WLANs under user mobility. We conducted experi-
ments in QuRiNet, a large-scale outdoor wireless testbed that expe-
riences little electromagnetic interference. We observe the variation
in video quality with the variance of both speed of a mobile user and
his distance from access point (AP). Using subjective scores and
objective video quality assessment metrics, we build a non-linear
regression model to estimate video quality based on user speed and
distance. An ensemble machine learning kernel, bagging, is used in
conjunction with Reduced Error Pruning Decision Trees to build a
non-linear prediction model that scores 69% correlation with video
quality. Overall, we find that distance has larger impact on video
quality than speed. However, the physical factors such as speed
and distance cannot be used in isolation to estimate video quality
accurately.

Categories and Subject Descriptors

C.4 [Performance of systems]: Performance attributes

General Terms

Measurement, Performance

Keywords

Video quality, measurement, WiFi

1. INTRODUCTION
In recent years, there has been an explosive growth in Internet

usage fueled by ubiquitous availability of smartphones, tablets and
other Internet-connected mobile devices. Video makes up a sig-
nificant proportion of the data consumed by users. Indeed, the
Cisco Visual Networking Index reports that mobile video traffic
accounted for 52% of total mobile data traffic by the end of 2012.
This figure is expected to grow to about 66% by 2017 [7]. At the
same time, network providers are faced with increased infrastruc-
ture costs and restricted spectrum allocations. This has triggered
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the introduction of data caps on cellular service subscriptions and
an almost total elimination of unlimited data service plans. Carri-
ers have also sought an alternative solution: heterogeneous wireless
networks that allow cellular network data traffic to be offloaded to
a wireless LAN in public places such as coffee shops, at home and
at the office.

However, the performance of mobile video delivery in the WiFi
standard is not yet clearly understood in an experimental context.
Much work has been done to characterize video quality on mo-
bile devices, but few, if any, have been undertaken in a live WiFi
network with mobile clients. Most efforts have focused on sce-
narios where packet drops and distortions are injected to videos.
Even then, these attempts do not take into consideration the speed
at which the mobile user is traveling as well as his distance from
the access point.

We created a database of forty five videos streamed over 802.11n
WLAN. Three high-definition video files were transmitted in differ-
ent mobility conditions at QuRiNet, a wide-area wireless outdoor
testbed [27]. We switched off the extra WiFi transmitters at this
ecological reserve to obtain an interference-free network. In addi-
tion to application layer data, we recorded network packet traces,
MAC-layer statistics from the wireless driver and speed and dis-
tance information. This rich source of information provides valu-
able insight on how various network and physical characteristics
affect video quality.

We then obtained both subjective scores (mean opinion score
or MOS of users) and established reduced-reference (RR) and no-
reference (NR) video quality metrics to estimate the video quality
using distance and speed information. We used three quality met-
rics: the Temporal Variation Index (TVI) [6], the blocking met-
ric [26] and the Natural Image Quality Evaluator (NIQE) [18].
First, we modeled the impact of user speed on subjective video
quality and obtained a 33% correlation. Whereas subjective scores
are available for the video as a whole, not on a per-frame basis, the
distance of the user from the access point changes on a per-frame
basis. Since TVI has finer granularity and achieved the highest
correlation with subjective quality (81%) we used it to develop a
regression model that estimated perceptual quality from user speed
and distance.

In our experiments, we varied user velocity values from zero to
50 kilometers per hour (30mph), with no Access Point handover,
since the IEEE 802.11 WLAN standard does not support it. This
conforms to use cases involving a group of people moving rela-
tively slowly while requesting the same data, for example in stadi-
ums, malls and campuses. In such locations, service providers can
offload traffic to reduce congestion on their last-mile networks.

For regression, we used both linear regression models and non-
linear regressions including machine learning algorithms such as



Reduced Error Pruning Decision Tree (REPTree) [22] and bag-
ging [3], an advanced ensemble classifier.

The main contributions of this paper are as follows:

• Our experiments demonstrate that a linear model outperforms
various non-linear models when predicting the effect of speed
on MOS, even though the correlation (ρ) with the actual MOS
is only 33%.

• We build non-linear regression models to predict the effect
of speed and distance on the TVI metric in an idealized envi-
ronment with little electromagnetic interference and no back-
ground traffic. We use the bagging ensemble machine-learning
classifier over REP decision trees to obtain a 69% correlation
accuracy on our full training set. However, the correlation
drops to 40% when we apply 10-fold cross-validation [14],
an indication that speed and distance cannot be used in iso-
lation to achieve an accurate estimate of video quality.

• Using various prediction models, we also show that distance
has a bigger impact on video quality than speed.

The paper is organized as follows: Section 2 gives an overview
of related works in this area. Section 3 presents the experiment
setup, followed by a brief summary of the objective and subjective
quality metrics in Section 4. In Section 5, we describe the predic-
tion models used in the paper. Section 6 presents the experiment
results and Section 7 concludes and discusses directions for future
work.

2. RELATEDWORK
A number of studies have been conducted to evaluate 802.11

behavior in infrastructure mode and vehicular clients, but most of
them do not have any emphasis on video traffic [10, 4, 20, 16, 28,
8]. They also do not consider the newer 802.11n standard. Notably,
Mahjan et al. [16] use 802.11 base-station (BS) beaconing mes-
sages as the underlying traffic to the fundamental characteristics
of WiFi-based connectivity between BS and vehicles in urban set-
tings. They find that intermittent periods of poor very connectivity
are not caused by vehicular motion per se but by the variability of
the environment combined by the vehicle traversing locations that
have poor coverage by the BS. In contrast, we aim to isolate and
quantify the effect of mobility by performing our experiments in an
interference-free environment with little obstruction and predefined
movement patterns. In [15], the authors analyze the capabilities of
802.11 b/g/n for both unicast and multicast streaming transmissions
directed to mobile devices in a simple testbed. However, they do
not consider clients in motion.

On the other hand, much work has done to develop and evalu-
ate objective video quality metrics in WiFi networks, for example
in [5, 6], but their endeavors assume non-moving clients. Moorthy
et al. [19] generate an extensive database of distorted videos and
corresponding scores, and conduct subjective, objective and behav-
ioral assessment of the videos. Even so, as in [25] their database
does not contain videos that have been transmitted over live wire-
less links. Instead, they simulate errors in wireless environments
using bit error patterns and software available from the VCEG [24].

To our knowledge, the impact of client motion on perceptual
video quality has not been quantified in any prior work.

3. EXPERIMENT SETUP
We first explain the experimental setup.

(a) Video A Sample Frame (b) Video B Sample Frame

(c) Video C Sample Frame

Figure 1: Example frames from the videos used in the study

3.1 Source Sequences
We collected data using three HD video sources. The first two

videos were captured in interlaced format (1080i) using a Sony
video camera at 30 interlaced frames per second. They were stored
in a MTS (MPEG Transport stream) container at a high bit-rate to
maximize the fidelity of the video. We were unable to detect any
differences in quality from the originals. Both videos were approxi-
mately sixty seconds long. The third video was captured in progres-
sive RAW YUV format with a chroma sub-sampling of 4:2:0 and
a bit-rate of 18 Mbps. It has a frame rate of 30 frames per second.
Similar to the two videos described above, it was then compressed
using the MPEG-4/H.264 Advanced Video Coding (AVC) codec
via ffmpeg, and encapsulated in a MPEG Transport stream, main-
taining the original bit-rate. As with the first two, the video was
60 seconds long. A more detailed description of the three videos
follows:

• Highway (Video A) - Filmed by a passenger on the front
seat of a car.The video has a bitrate of 5Mbps, 30 interlaced
frames per second, with a resolution of 1080i (1440x1080).

• Park Scenery (Video B) - Filmed at a local park in Davis,
California. It has a bitrate of 7Mbps, 30 interlaced frames
per second, with a resolution of 1080i (1440x1080).

• Park Run (Video C) - Captures a person jogging in a park
while holding an umbrella. Every ten seconds, the subject
of the video momentarily comes to a complete stop before
running again. The video has a bitrate of 18Mbps, 30 frames
per second and has a resolution of 1080p (1920x1080).

Figure 1 shows sample frames from the various video sequences.

3.2 Location
We performed our experiments in the Quail Ridge Wireless Mul-

tihop Testbed (QuRiNet) [27]. QuRiNet is an outdoor, solar-powered
wireless testbed deployed in the Quail Ridge Reserve at Lake Berryessa,
California. A layout of the site is shown in 2(a). Since the area is
uninhabited, it gave us an excellent chance to deploy large-scale
experiments in an area that is largely free of electromagnetic inter-
ference and other sources of perturbation.

3.3 Device Setup
For our evaluation, we designated one site (site X), as the source

of transmission. A laptop was connected to the site router, a Soekris
net4826, via a CAT 5 Ethernet Cable. The streaming server was a



(a) QuRiNet layout with
server location circled

(b) Trail Used in Experi-
ments

(c) Server Setup (d) Client Setup

Figure 2: Experiment setup

Dell laptop with an Intel Core i5-2520M CPU processor clocked at
2.5GHz, integrated Intel graphics card, and 4GB of main memory.

The client site Y had a similar Soekris board setup, with a Dell
Latitude E5400 laptop that had an Intel Core 2 Duo CPU clocked
at 2.0 GHz and 2.0 GB of main memory. Both server and client
laptops ran the Linux-based Ubuntu 12.04 operating system. We
placed the client set-up on an All-Terrain Vehicle (ATV).

Each of the routers had one 2x2 Microtik R52n-M MIMO IEEE
802.11a/b/g/n Mini-PCI form-factor wireless card with the Atheros
AR9220 chipset and the ath9k open source wireless driver. The
transmission power was fixed at 16dBm. The channel was set to
2.462GHz, to further isolate the experiments from other testbed
routers set to the non-overlapping channel 1 (2.412GHz). Due to
the isolation enjoyed by the testbed, we could not detect any other
wireless transmissions on that frequency. The wireless interfaces
on the two routers had an omni-directional antenna with 7.4dBi an-
tenna gain. We attached only one antenna to each of the cards.
The antennas at both sites were set 155cm above the ground. De-
spite the overall hilly terrain of the environment, the specific loca-
tion of our experiments had relatively flat topology. In throughput
tests, we achieved an average of 11Mbps on our link. However,
we empirically realized transmission rates of up to 65Mbps, corre-
sponding to Modulation and Coding Scheme (MCS) Index 7. The
rate was dynamic owing to the use of the Ministrel rate control
algorithm, which chooses the modulation scheme based on an Ex-
ponential Weighted Moving Average (EWMA) of packet delivery
success rates and adjusts the sending rate accordingly. We drove
the ATV over a range of approximately 300 meters and used the
US GlobalSat BU-353 GPS receiver to log GPS coordinates. Fig. 2
shows our experimental setup. For clarity, we have circled the lap-
top, router and antenna on both the server and client side.

3.4 Data Collection Methodology

For each video, we considered three different mobility scenarios,
and performed five runs in each of them, for a total of 45 runs for
the HD videos:

• Scenario 1 - A speed range of 0 mph to approximately 4 mph
(0 km/h to approximately 6 km/h), mimicking motion from
a standstill to a leisurely walk. Average speed of 3mph.

• Scenario 2 - A speed range of 0 mph to 10 mph (0 km/h to
16 km/h). Average speed of 8mph.

• Scenario 3 - A speed range of 10 mph to 50 mph (0 km/h to
50 km/h). Average speed of 20mph.

For Scenarios 2 and 3, we tried to prune the periods with lit-
tle motion. This was limited to the start of the run, maneuvering
around a slight curve in our path, or when we had to execute a turn.

Before starting the runs, we first synchronized the two routers
and two laptops to within half a second of each other. At each run,
we started driving the ATV at the same time as the scheduled trans-
mission of the video, and concluded that run at the end of the video.
Using tcpdump, we obtained packet traces from all four devices
during this period. Additionally, at the routers, we logged various
wireless parameters from the iw and iwconfig utilities, and enabled
the debug filesystem in order to access MAC-layer statistics. The
GPS device was directly connected to the client laptop, and at every
run, gathered GPS location information on a per-second granular-
ity. This was facilitated by the freely-available gpsd daemon which
avails location information from the GPS device to a suitable client
software[1]. In our case, we used gpxlogger, a tool developed in
conjunction with gpsd that returns XML-formatted fixes every sec-
ond. We calculated the distance from the AP using the Haversine
formula[23] implemented in the Python-based gpxpy library [2],
and derived speed from those values.

We used the VideoLan VLC software for video streaming. Dur-
ing video transmission, the video stream was routed from the lap-
top to the Soekris board, which then unicasts the video over the
wireless link using the Real-time Transport Protocol (RTP) over
UDP. We chose this set up because the routers are too computa-
tionally constrained to handle the video streaming by themselves.
We saved the streamed video at the client, but we did not perform
any additional transcoding during or after the stream.

4. VIDEO QUALITY METRICS

4.1 Objective Metrics
We used two no-reference spatial and one reduced-reference tem-

poral video quality assessment (VQA) algorithm to evaluate objec-
tive video quality at the receiver. Spatial metrics attempt to quan-
tify intra-frame video quality aspects such as blocking or blurring.
Temporal metrics on the other hand capture inter-frame distortions
like jitter and frame delay .

The two spatial metrics are the blocking metric [26] and the Nat-
ural Image Quality Evaluator (NIQE) [18]. The Temporal Vari-
ation Index (TVI) rounds out our objective VQA algorithms [6].
NIQE has been recently proposed in literature, and like TVI, has
been found to have a high correlation with subjective video quality.
We chose blocking as the additional spatial metric because unlike
NIQE, it is not derived from the image characteristics of a set of
pristine images, but from the video coding artifacts or the test video
itself. TVI compares the motion between the source and received
videos to identify frame losses and video freezing.
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Figure 3: MOS and 95% confidence intervals for test videos

4.2 Subjective Experiments
We engaged 23 volunteers as observers to provide a subjective

evaluation of 25 randomly chosen received video samples1. Our
test volunteers had an age range of 20 to 45. There were six females
(26%) and 17 males. Their occupation ranged from undergraduate
students to laboratory technicians. Each subject was asked to grade
the quality of videos on a five-point scale [13], once for each video,
and enter the opinion on a prepared form. Score 1 represents a bad
quality video with very annoying impairment, and Score 5 indicates
excellent quality and imperceptible impairment.

The videos were displayed on a Dell Latitude E6420 laptop with
14 inch LED display and a screen resolution of 1366x768. All of
the volunteers used the VLC media player software for playback.

We performed our test according to the single-stimulus (SS)
method [13]. Standard videos with five different scores were shown
at the beginning of the test. During the test, only the videos to
be scored were shown, in arbitrary order, without any display of
the standard videos. For each video clip, we averaged the opinion
scores given by the observers to obtain the Mean Opinion Score
(MOS) for that video.

Figure 3 shows that the MOS obtained for all videos ranged from
1.08 to 4.65. This shows that our test videos captured a wide range
of quality. The average size of the 95% confidence interval among
the videos is 0.65, indicating consensus among the observers.

5. PREDICTION MODELS
Typically, a regression or classification setting will have a learn-

ing or training set of L consisting of data {(yn,xn), n = 1, ..., N}
where the y’s are either numerical responses or class labels and
xn ∈ R

d is the d-dimension attribute or Feature Vector (FV) for
the nth instance. This training set is used as input to a machine
learning algorithm to form a predictor ϕ(x,L). That is, given an
input x, we predict y using the function ϕ(x,L).

5.1 Linear Parametric Model
We considered a linear parametric model using ordinary least-

squares regression for our investigation [17].

5.2 Reduced Error Pruning Tree
We used the Reduced Error Pruning Tree (REPTree) to build

non-linear predictive models[22]. REPTree comes from the fam-
ily of decision trees, which build classification or regression mod-
els in a tree-like structure. An internal node represents a test on
an attribute, branches denote the outcome of the tests, and the leaf
node corresponds to the numerical target. Decision trees use the

1According to ITU-R BT.500-13 subjective assessment stan-
dard, [13], a minimum of 15 observers is needed for subjective
quality evaluation

ID3 algorithm at their core[21]. ID3 does a greedy space search
over the possible branches without backtracking. Given an exam-
ple set S, ID3 will choose the root node as the attribute that has the
lowest entropy or highest information gain. This can be calculated
using the formula sX − sX,Z , where X is the attribute, Z is the
target variable and s is the standard deviation. The attribute that
results in the lowest sX,Z is the root, since it results in the high-
est standard deviation reduction. For a continuous attribute A, a
threshold c is picked such that it maximizes the information gain.
Two branches are added, representing the two subsets of A < c
and A > c. The attribute selection and branch splitting at each of
the new nodes is repeated, until the number of predicting attributes
has been exhausted, or the stopping criteria has been met.

5.3 Bagging
Bagging, a sobriquet of bootstrap aggregating, is an ensemble

machine learning meta-algorithm used to improve the stability and
accuracy of machine learning methods [3]. It generates multiple
versions of a predictor and then uses these to get an aggregate pre-
dictor. Each predictor is obtained by bootstrapping the learning
set [9]. It works as follows: instead of using the training set as-is,
generate M new training sets {Li}, each of size N , by sampling
from {L} uniformly and with replacement. M is usually chosen
as 50 or 100, and N is the size of the training data. Each of the
{Li} is a bootstrap sample. The bootstrapped estimator is then cal-
culated via ϕ(x,Li). The resulting estimators can be aggregated
by averaging for the regression case.

ϕB(x) =

M∑

i=1

ϕ(xi,Li) (1)

Finally, this random division of data is repeated over multiple it-
erations, say between 10 and 10,000, to provide robustness in the
results.

Bagging has been shown to improve the accuracy of unstable
procedures where a small change in L can lead to a large change in
ϕ. This is the case for neural networks, classification and regression
trees, and subset selection in linear regression [3]. In our work,
both REPTrees and linear regressions are used to construct different
bagging predictors.

We use the linear regression, bagging and REPTree implementa-
tions in Weka [11].

6. EXPERIMENTS AND RESULTS

6.1 Evaluation of Objective Metrics
In our analysis, we first consider the objective VQA metrics

from nine different received videos, representing all three videos
and all three mobility scenarios. For this foray, instead of taking
the raw per-frame values of the metrics, we split them into bins of
one second each and use the average value over each of these bins.
Thus, whereas each metric was derived from one frame, we use the
mean of thirty such metrics to represent the per-second objective
image quality. In addition to making it convenient when pairing
with speed and distance values, this approach works well to miti-
gate the impact of frame losses on reduced or full-reference metrics
like TVI. It also reduces the inaccuracies introduced by frame mis-
alignment, since the metric is now derived from the average of 30
consecutive frames instead of from the values of potentially mis-
matched frames. To further highlight the changes in blocking and
NIQE after transmission, we calculate the difference between the
per-second average values between the source and received videos,
giving us delta-blocking and delta-NIQE. Figure 4 provides basic
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(c) Blocking for Video C
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(d) NIQE for Video A
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Figure 4: Blocking, NIQE and TVI metrics for three sample videos

Table 1: Spearman correlation coefficients of MOS and objec-

tive metrics
NIQE Blocking TVI

MOS -0.3366 -0.6769 -0.8151

comparisons on the effect of mobility on the video quality metrics
for three randomly selected received videos.

A number of insights can be obtained from Figure 4, which was
representative of the database. For all possible scenarios, there was
an obvious degradation of quality at the very start of the stream,
due to delays in video processing at the receiver during the initial
RTP session setup. Since RTP runs over UDP, and the latter has
no congestion or error control, it is the responsibility of the client
RTP implementation to reorder packets using the sequence num-
bers contained in the RTP packet header. At the outset, the client
may struggle to process the new burst of incoming packets, lead-
ing to dropping some packets in order to ensure a timely service.
The dropped packets manifest themselves in an initial decrease in
quality in all cases.

Another key observation is that the video quality metrics, and
especially TVI, do not exhibit a linear relationship with the speed
or distance. Instead, the metric degradation episode frequency in-
creases with speed and distance; that is, losses in objective video
quality are bursty, and the probability of this “burstiness” increases
at higher speeds and distances.

Table 1 contains the correlation coefficients of MOS and the
three objective quality indicators. MOS enjoys the highest cor-
relation with TVI (-0.8151), followed by Blocking and NIQE at
-0.6769 and -0.3366 respectively. Given the correlations, it is clear
that TVI is much better at capturing quality degradation that is ef-
fected by variations in speed and distance. This also implies that
temporal artifacts have a significant impact on the quality of delay-
intolerant HD mobile video streaming with a non-scalable video
codec.

6.2 Modeling the Effect of Speed on Subjec-
tive Video Quality

Table 2: Modeling the effect of speed on MOS with 10-fold

cross-validation
Predictor Used ρ RMSE MAE
Linear Regression 0.3356 1.0453 0.9666
REPTree 0.2045 1.1435 1.0152
Bagging with REPTree 0.3125 1.0523 0.938
Bagging with linear model 0.3339 1.0489 0.9726

Next, we estimate the effect of speed on MOS. We propose the
following linear regression model:

M̂OS = β̂0 + β̂1Speed (2)

The equation above has speed as the predictor variable and M̂OS
as the predicted MOS.

Table 2 gives the performance results for the estimation of the re-
lationship between MOS and Speed using linear regression, REP-
Tree and bagging. For reasons explained in 6.3, we only include
per-video average speed as our predictor and exclude distance in-
formation. We use 1000 iterations for bagging. Since the sample
size is only 25, we perform 10-fold cross-validation for all predic-
tors[14]. ρ is the correlation between the predicted output and the
actual MOS values. RMSE is the Root Mean Square Error while
MAE is the Mean Absolute Error. Based on the ρ, RMSE and
MAE, it can clearly be seen that linear regression gives the best per-
formance when predicting the impact of speed on MOS. Notably,
bagging using a linear model does not provide any improvement.
This is not unexpected because bagging is only useful with linear
regression when the task is subset selection, that is, when one is
considering adding other attributes to obtain the best model. In our
case, we only have one attribute[3].

The linear equation for estimating MOS is:

M̂OS = 3.6311− 0.0621Speed (3)

The 95% confidence interval for β̂1 is (-0.03572, -0.0884). Since
this interval does not include zero, speed has a statistically signifi-
cant correlation with MOS. Even so, the low ρ value of 0.3356 sug-
gests that speed alone has a low impact on subjective video quality.



Table 3: Impact of speed and distance on TVI (10-fold cross-validation ρ in parentheses)

Model used ρ RMSE MAE
Linear Regression

Speed 0.1881 (0.1831) 0.8116 (0.8124) 0.5357 (0.5362)
Distance 0.202 (0.1959) 0.8093 (0.8103) 0.5406 (0.5413)
Speed + Distance 0.2394 (0.2327) 0.8023 (0.8037) 0.5274 (0.5282)

REPTree
Speed 0.3483 (0.2376) 0.7746 (0.807) 0.4998 (0.5205)
Distance 0.3391 (0.275) 0.7774 (0.8003) 0.5105 (0.5175)
Speed + Distance 0.4184 (0.3258) 0.7585 (0.7883) 0.4705 (0.4985)

Bagging with REPTree Predictor
Speed 0.5029 (0.2743) 0.7258 (0.7967) 0.4663 (0.5094)
Distance 0.5916 (0.3138) 0.6834 (0.7887) 0.4435 (0.5058)
Speed + Distance 0.6859 (0.4049) 0.6312 (0.756) 0.3959 (0.4709)

Figure 5: Plot of TVI against speed and distance using different predictors

6.3 Modeling the Effect of Speed and Distance
on TVI

In section 6.1, our model assumes that the effect of speed on
MOS is the same at all distances [17]. To remove this assump-
tion, we have to include the per-video average of distance parame-
ter as a predictor variable. However, the range of distance values is
large, especially for the fast mobility scenarios. This has two chal-
lenges: first, using the per-video average distance as a predictor in
this model will ouput unreliable results since the variation is unac-
counted for. Secondly, the averages exclude a lot of information,
since they tend to cluster around three values corresponding to the
mobility scenarios.

To counter this problem, we substitute the MOS with an objec-
tive metric that is highly correlated with it, but at the same time has
finer granularity. From the results above, per-second TVI is well
suited for this.

In Table 3 we give the results of three different models formed
by using only the speed attribute, the distance attribute and both
the speed and distance attributes respectively. We took forty of the
forty five received videos and found the per-second values of TVI,
speed and distance for the first 50 seconds of each. This gave us a
total of 2000 data points. We then used three different predictors for
each model, linear regression, bagging, REPTree and bagging with
REPTree. We report the values from using our model on the full
training set, and include the result from 10-fold cross-validation in
parentheses.

The results are markedly different from the model that was pre-
dicting MOS. The linear regression models have the worst perfor-
mance; as seen in Figure 4, there is a non-linear relationship be-
tween the per-second objective metrics and motion. Bagging with
the REPTree algorithm has the best performance in terms of the
low ρ, RMSE and MAE. This is consistent with the assertion that

bagging works well when the underlying algorithm is a regression
tree [12].

All the models that only use distance as the feature vector demon-
strate a higher correlation between predicted and actual TVI than
those that only use speed, implying that the effect of distance is
bigger than that of speed. Combining both of these feature vec-
tors on the full training set gives the highest ρ of 0.6859 and the
lowest RMSE and MAE of 0.6312 and 0.3959 respectively when
bagging with REPTree is the predictor. Nevertheless, the 10-fold
cross-validation ρ value of 0.4049 suggests a weak impact of both
of these FVs on TVI. Figure 5 is representative of the relative per-
formance of each predictor on the speed and distance model when
we do a 70/30 training-test split on the full training set of 2000,
train the predictors on the 1400 training samples, and then test them
on the remaining test data.

7. CONCLUSION AND FUTUREWORK
In this work, we evaluated perceptual video quality in 802.11n

wireless networks with mobile clients using both objective and sub-
jective video quality metrics. We conducted our experiments in
a live outdoor wireless testbed with little electromagnetic inter-
ference, and used three different mobility scenarios, effected by
mounting the mobile clients on All-Terrain Vehicles and driving
at average speeds of approximately 3mph, 8mph and 20mph for
each of the scenarios. We used three different HD-quality videos
encoded in MPEG-4/H.264 AVC format.

We found that the relationship between MOS and speed is best
represented using a linear model, but the resulting model only had a
33% correlation and RMSE of 1.05. When both speed and distance
were used to predict objective quality, bagging with REPTree was
the best predictor, with a moderately high correlation of 0.69% and
RMSE of 0.6312 on the full training set, but a lower correlation
of 40% and higher RMSE of 0.756 when 10-fold cross-validation



is applied. This indicates that although speed and distance have
an effect on video quality, this effect is not overwhelming. Lastly,
across all predictors, models that had distance as the lone feature
vector performed better than those that only used speed.

Spurred by these results, we plan to identify other features that
will provide more accurate models for video quality in a mobile
WiFi setting. Another direction for future work is to develop loss-
tolerant and computationally inexpensive objective VQA algorithms
that more closely correlate with the MOS, especially in mobile sce-
narios.
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