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ABSTRACT
Occupancy sensing is essential for vehicle safety and security ap-
plications such as seat belt reminders, airbag deployment, intru-
sion detection, and child-left-behind alerts. This paper presents
UMusic, a novel in-car occupancy sensing system that reuses the
ultra-wideband (UWB) devices already installed for access control
in modern vehicles. However, due to the compact size and metal
structure, the in-car environment is full of reflected propagation
paths, which cannot be precisely resolved even with UWB’s wide-
bandwidth feature. To overcome this challenge, UMusic introduces a
reflected-path decomposition technique to extract a high-resolution
power delay profile (PDP) from the channel impulse response (CIR)
provided by commodity UWB devices, enabling precise environ-
mental perception. By comparing PDPs in empty and occupied
conditions, UMusic is able to detect the occupancy status in both
a sedan and an SUV with multiple passengers across various sce-
narios. Our results show that UMusic achieves a 90.2% detection
rate using a single CIR measurement collected within 50 ms, out-
performing the state-of-the-art by 15.7%. When aggregating six
consecutive CIR measurements, UMusic reaches 99.4% accuracy,
demonstrating its effectiveness for real-world deployment.
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1 INTRODUCTION
The automotive industry has been undergoing a major transforma-
tion over the past century, shifting from engine-centric design to pri-
oritizing passenger experience [14]. Modern cars are no longer just
transport vehicles but intelligent ecosystems that enhance safety
and comfort for users [4, 81, 86]. For instance, incorporating various
sensors, automakers like Ford [13], Honda [19], and Tesla [59] are
making significant progress in building advanced collision avoid-
ance, theft protection, and keyless entry solutions [12, 21].

Meanwhile, in-car occupancy sensing is gaining traction in the
automotive industry, enhancing interior intelligence [4, 14, 32] for
applications such as rear seat belt reminders, optimized airbag de-
ployment [38], vital signs recognition [25, 29, 91], child (or pet) left
behind detection [20, 85, 90], and personalized HVAC and stereo set-
tings. Despite the promising applications, most of these techniques
assume prior knowledge of the car’s occupancy status. In other
words, these sensing systems are unable to adaptively customize
sensor parameters (e.g., camera rotation) to focus on the passenger
for improved sensing performance when the occupancy status is
unknown. While weight sensors are commonly used for in-car oc-
cupancy detection, they struggle to distinguish heavy luggage from
human occupants [32]. Additionally, weight sensors are typically
constrained to the front seats, while they are unavailable to the rear
seats due to their high cost and installation complexity [35, 85].

To address the need for in-car occupancy detection, this paper
introduces UMusic, a precise in-car sensing solution leveraging
Ultra-Wideband (UWB) technology for occupancy detection. UMu-
sic utilizes UWB’s channel estimation capabilities to analyze the
in-car environment. Changes in passenger occupancy alter UWB
signal propagation paths, referred to as the power delay profile
(PDP), leading to variations in channel information, specifically
the accessible channel impulse response (CIR) data [48, 49]. UMu-
sic leverages the existing deployment of UWB technology for ac-
cess control via digital key services provided by manufacturers
such as Volkswagen [40], BMW [2], and Hyundai [5] 1. Unlike
vision-based [12, 22, 37, 51, 62], acoustic-based [90], mmWave-
based [16, 25, 58], and WiFi-based [20, 81, 85] approaches, UMusic
offers enhanced privacy preservation, cost-effectiveness, high pre-
cision and a lightweight design.

However, directly applying CIR data for in-car environment
sensing, particularly for occupancy detection, presents unique chal-
lenges. The metal structure confines reflected UWB signals within
a compact (2m×2m) space, leading to rich reflections with similar
propagation path lengths. These reflections are difficult to differen-
tiate in the CIR data due to limited spatial resolution; specifically,

1These digital key setups typically involve up to eight internal UWB devices [17, 32],
with up to four devices installed externally.
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two paths need to differ by at least 0.6 m to be separated effec-
tively, as validated in Section 2.3. To address this challenge, deep-
learning-based approaches, such as CarOSense [32], are utilized.
These methods typically involve complex deep learning models
that demand extensive training and testing to generalize across
different car models, which poses challenges for their widespread
adoption across various vehicle types.

UMusic takes a different approach by employing signal pro-
cessing techniques combined with a simple classification model to
precisely detect in-car occupancy via the following innovative tech-
nical highlights: (i), High-Resolution and Robust PDP Calcula-
tion - UMusic carefully extracts reflected signal paths to compute
a high-resolution PDP from CIR data by decomposing in-car reflec-
tions. Additionally, we provide a formal proof demonstrating the
robustness of our PDP calculation method against errors introduced
by UWB hardware imperfections. (ii), Smart Occupancy Detec-
tion - UMusic effectively utilizes a phenomenonwhere the presence
of a passenger only affects signal propagation paths longer than the
line-of-sight (LoS) path (i.e., TX-Passenger-RX), while shorter paths
remain unaffected. By excluding these longer paths from the PDP,
UMusic reduces the complexity of occupancy detection. With the
assistance of a simple machine learning model such as SVM, UMu-
sic detects changes in the LoS paths, enabling accurate occupancy
status detection. (iii), Computational Efficiency - To optimize
performance for onboard computers, UMusic employs a downsam-
pling strategy to lower the computational cost of calculating PDP,
cutting it down to a brisk 0.125 ms. A formal proof also substanti-
ates the method’s capability to preserve PDP accuracy efficiently. In
addition, we address CIR aliasing and misalignment issues, enhanc-
ing the practicality of UMusic. By incorporating these techniques,
UMusic achieves a highly accurate, lightweight, cost-effective, and
privacy-preserving design, making it suitable for deployment in
various car models. We evaluate UMusic’s performance on two car
models across different scenarios, achieving an overall detection
rate of 90.2% and an accuracy of 99.4% when aggregating the re-
sults of six consecutive estimations. To summarize, the contribution
of this paper is threefold:

• We present UMusic, an innovative in-car occupancy sensing
system designed to detect passengers’ seats accurately. UMu-
sic envisions to utilize the UWB devices available in cars for
access control, making it a cost-effective and easy-to-deploy
solution.

• UMusic introduces an innovative path decomposition tech-
nique to capture the high-resolution PDP of in-car signal
propagation, which is then used to detect passenger occu-
pancy. To implement UMusic effectively, we tackle UWB
hardware imperfections such as carrier frequency offset,
sampling time offset, and random initial phase. Additionally,
we reduce computational complexity to ensure compatibility
with various onboard computing systems.

• We evaluate UMusic’s performance on DW1000 UWB de-
vices under various scenarios. The experimental results demon-
strate that UMusic achieves 99.4% accuracy in occupancy
detection. At the same time, the simulation shows the high
precision of PDP calculation, indicating the potential for
UMusic’s application in more general scenarios.
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(a) An UWB PHY packet consists of a Preamble,
Start Frame Delimiter (SFD), PHY Header (PHR),
and Data fields.
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Figure 1: Illustration of UWB PHY layer and CIR-based
packet arrival detection.

2 BACKGROUND AND MOTIVATION
2.1 The Need of In-car Occupancy Sensing
In recent years, there have been significant advancements in in-
car human sensing [12, 14, 64, 81], which allows the car to obtain
the passengers’ positions [25, 32], presence [12, 21], and even vital
signs [25, 55]. Of these sensing abilities, occupancy detection has
become increasingly important for modern vehicles. For example,
by assisting impact sensors, the in-car occupancy detection system
can ensure that only specific airbags (i.e., the driver and passenger
front airbags and corresponding side airbags) are deployed, while
the rest remain deactivated to prevent unnecessary injury [23].
Additionally, the vehicle’s interior lighting, audio system, air con-
ditioning, and power accessories can be adapted to enhance the
passenger experience. Furthermore, occupancy detection serves as
the foundation for many existing in-car sensing systems, including
those for detecting vital signs [25, 55], which can be used to enable
child left behind and medical emergency detection.

Despite the potential benefits, a deployable in-car occupancy
detection system is not there yet. EU NCAP [38] and NHTSA [39]
currently only mandate occupancy detection for the driver and
front seats, leaving rear seat detection unregulated, while the abil-
ity to derive the potential presence of a subject or object inside
the car based on pressure will not be rewarded from 2025 onwards.
Consequently, weight/pressure sensors are primarily installed in
front seats, as equipping all seats with dedicated sensors would
increase hardware and installation costs [35, 85]. A car occupancy
detection system, in general, should be highly accurate and com-
mercially viable, prompting us to rethink the UWB technologies
that are already integrated into the existing in-car systems [2, 5].

2.2 UWB Primer
UWB is a wireless technology widely applied in real-time location
systems, featured by NXP Semiconductors [53] and Qorvo [48,
49] radio chips as well as many famous vendors, including Apple,
Samsung, and Xiaomi. Its high accuracy in distance ranging is
essentially achieved by utilizing UWB CIR data to determine the
packet arrival time, which is used to precisely estimate the distance
between the transmitter and receiver. The UWB PHY packet begins
with the preamble field, consisting of sequences of +/- pulses or
no pulse, as illustrated in Figure 1(a). The preamble sequence is
designed to maintain a perfect periodic autocorrelation, enabling
the receiver to obtain the exact CIR using a correlator [34]. As
a result, the receiver marks the timestamp with the arrival time

117



UMusic: In-car Occupancy Sensing via High-resolution UWB Power Delay Profile SenSys ’25, May 6–9, 2025, Irvine, CA, USA

21

UWB 
Devices

Seats
Taken

(a) UWB devices are deployed
to collect CIR data when a per-
son sits on two different seats.

Time (ns)
1

CIR

PDP
(UMusic)

Time (ns)

2 3 4

1 2 3 4
Seat 2

Seat 1 Seat 2
ρ = 0.04

ρ = 0.96
Seat 1

(b) CIR amplitude (upper) collected at two different
seats are compared with the corresponding the high-
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Figure 2: Preliminary study in a car to compare the CIR
amplitude and PDP calculated by UMusic.

of the first path (the first peak in CIR), as depicted in Figure 1(b),
while the full CIR data is temporally saved in the UWB PHY layer.
With a pulse duration of 2 ns, which is equivalent to the 60 cm
spatial resolution, UWB can support large-area sensing tasks such
as people counting [9] and localization [26, 60, 61, 63] in a large
room, car localization [82] on the road, and enabling keyless entry
for cars [21]. However, directly using CIR amplitude for small-area
sensing such as car occupancy detection would result in ambiguity,
as demonstrated in our preliminary study in the next section.

2.3 The Limitation of UWB CIR Amplitude
We deploy two UWB devices in the middle of a car, as depicted in
Figure 2(a), to collect the CIR data when a person sits on seat 1 and
seat 2. As a person sits in different seats, the signal propagation
paths affected by the human body should change significantly. The
essence of occupancy detection is to capture this change from the
power delay profile. However, as shown in Figure 2(b), the CIR data
(amplitude) collected on these two seats are quite similar (with a
correlation 𝜌 of 0.96). Such a high correlation would eventually re-
sult in the ambiguity of directly applying CIR to detect the occupied
seats. This happens because the signal propagation change caused
by these two occupancy statuses is much less than the spatial res-
olution (60 cm). Since the CIR amplitude couldn’t fully capture
any signal propagation change within 60 cm, it is challenging to
distinguish the two adjacent seats (20 to 30 cm away) occupancy.

Previous work on using UWB for small-area sensing has either
relied on heavy machine-learning models [32, 89, 92] or complex
hardware setups [3, 71, 88]. However, these designs are impractical
for low-cost UWB radio chips and onboard computers with lim-
ited computational resources. In contrast, UMusic is designed to
work with commodity UWB devices via a novel signal-processing
technique to extract a high-resolution PDP that can perceive small
environment changes caused by different occupancy statuses. As
illustrated in Figure 2(b), the PDP calculated by UMusic reflects
signal propagation in finer granularity, with the common first peak
corresponding to the Tx-Rx path, while other peaks containing the
Tx-Body-Rx path are different for the two seats. With the help of a
lightweight classification model, UMusic achieves a detection rate
of 99.4%, aggregated from six consecutive CIR measurements. In
the next section, we provide an overview of UMusic, followed by a
detailed design of each technical highlight.

UWB 
Devices

1 2
Time (ns)

PDP

CIR Data Collection PDP Calculation Occupancy Detection

Link 1
Link …

Link N

1 2
Time (ns)

CIR

Model

Figure 3: UMusic operates in three steps, from collecting CIR
data using UWB devices deployed in the car to obtaining the
high-resolution PDP, from which the occupancy is detected.

3 DESIGN OVERVIEW
As depicted in Figure 3, UMusic comprises three steps: (i) CIR data is
collected from multiple links of transmitters and receivers installed
in a vehicle. The multiple Tx-Rx links allow us to obtain the PDP
from various angles, providing a better perception of the signal
propagation changes caused by a human. (ii) UMusic calculates
the high-resolution PDP from the collected CIR data. Finally, the
PDPs obtained from multiple Tx-Rx links are fed into a simple
classification model in Step (iii) to detect the car occupancy status.

The resolution of CIR amplitude is limited by the UWB PHY layer
design, posing significant challenges for PDP calculation. UMusic
overcomes this limitation and achieves high-resolution PDP calcu-
lation and accurate car occupancy detection by fully investigating
the CIR data’s amplitude and phase information. However, due to
hardware imperfections, the phase information in CIR is highly
biased, leading to more practical issues in the design of UMusic.
The following section presents our solutions for these challenges.

4 MAIN DESIGN
As the core of UMusic, decomposing the reflected path in high-
resolution PDP calculation is demonstrated first in this section,
followed by car occupancy detection.

4.1 High-resolution Power Delay Profile in
UWB

Mixer Low-pass Filter ADC CIR
Estimation

CIR Data

Figure 4: UWB PHY layer passes the received signal to Mixer,
Low-pass filter, ADC, and CIR Estimation, to extract CIR.

To illustrate the root cause of the ambiguity in CIR amplitude, we
first formulate the CIR estimation process in the UWB PHY layer
before demonstrating the detailed design for high-resolution PDP
calculation. Let 𝑥 (𝑡) denote the transmitted signal of the preamble
field in the UWB packet. After the UWB signal is transmitted, it
traverses through 𝑁 signal propagation paths, resulting in copies
with a delay of 𝜏𝑖 for the 𝑖-th path. These delayed copies arrive at
the receiver side consecutively, yielding the received signal 𝑦 (𝑡):

𝑦 (𝑡) =
𝑁−1∑︁
𝑖=0

𝑎𝑖 𝑒
− 𝑗2𝜋 𝑓𝑐𝜏𝑖𝑥 (𝑡 − 𝜏𝑖 ) (1)

where 𝑓𝑐 is the center frequency of the UWB signal, and 𝑎𝑖 is the
attenuation of the 𝑖-th path. In addition, the corresponding power
delay profile could be formulated as follows:
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Figure 5: Two paths with the delay of 1 ns and 1.5 ns are
added up to be the CIR data peaking at 1.25 ns.

ℎ(𝑡) =
𝑁−1∑︁
𝑖=0

𝑎𝑖 𝑒
− 𝑗2𝜋 𝑓𝑐𝜏𝑖𝛿 (𝑡 − 𝜏𝑖 ) (2)

where 𝛿 (𝑡) is a Dirac’s delta function [41]. The received signal
𝑦 (𝑡) is fed into the UWB PHY layer to obtain the CIR data as an
estimation of ℎ(𝑡), as illustrated in Figure 4.

Specifically, upon the arrival of the UWB signal, the Mixer first
performs a passband to baseband conversion on the signal to ob-
tain the baseband signal 𝑦 (𝑡). Subsequently, the received signal is
passed through a Low-pass Filter to eliminate unwanted parts and
retain the middle 𝐵 Hz bandwidth (e.g, 500MHz), which is achieved
mathematically by convolving 𝑦 (𝑡) with the sinc-shaped filter, rep-
resented by sinc(𝐵𝑡) = sin(𝜋𝐵𝑡 )

𝜋𝐵𝑡
[41]. The resulting signal is then

sampled by the Analog-to-digital Converter (ADC) at every𝑇𝑠 (e.g.,
1 ns) interval to generate time-domain samples. Finally, the CIR
Estimation applies a correlator to extract the CIR Data, which is
denoted by ℎ[𝑛]:

ℎ[𝑛] =
𝑁−1∑︁
𝑖=0

𝑎𝑖 𝑒
− 𝑗2𝜋 𝑓𝑐𝜏𝑖 sinc(𝑛 − 𝜏𝑖

𝑇𝑠
) (3)

By comparing ℎ[𝑛] in Equation 3 and ℎ(𝑡) in Equation 2, the
precision of using CIR amplitude as PDP is determined by the
sinc filter. To demonstrate these effects thoroughly, we provide an
example with two signal propagation paths.

Figure 5 illustrates an example where the channel includes two
paths with propagation delays of 1 ns and 1.5 ns, respectively. When
two copies of the transmitted signal arrive through these paths, they
are shaped by the sinc filter with a main lobe of 2 ns, resulting in the
corresponding two peaks merging into a single high peak at 1.25 ns.
After ADC sampling, the resulting samples are further distorted,
and the CIR amplitude does not accurately capture the two paths
of 1 ns and 1.5 ns. This ambiguity in the CIR data can mislead
car occupancy detection. To address this ambiguity, Caraokey [21]
attempts to improve the precision of CIR amplitude through zero-
padding-based upsampling. However, this approach only smooths
the CIR amplitude, and the ambiguity remains unresolved. In the
following section, we will demonstrate how UMusic overcomes the
influence of LPF and achieves a high-resolution PDP.

4.1.1 Reverting Low-pass Filter. In order to undo the LPF’s sinc
shaping, the time-domain CIR ℎ[𝑛] is transformed into the fre-
quency domain, resulting in the channel frequency response (CFR):

𝐻 [𝑘] =
𝑁−1∑︁
𝑖=0

𝑎𝑖 𝑒
− 𝑗2𝜋 (𝑓0+(𝑘−1) 𝑓Δ )𝜏𝑖 (4)

where 𝑓0 represents the center frequency of the leftmost frequency
bins, and 𝑓Δ denotes the channel spacing, which is typically 5 MHz
in UWB. As the sinc function in the frequency domain is equivalent
to a rectangular function [41], the CFR in Equation 4 is free of LPF’s
influence. While this calculation is simple, it is a crucial step for
reverting the low-pass filter to obtain the reflected paths.

4.1.2 Reflected Paths Separation. However, transforming the CIR
data into the frequency domain incorporates all path information
into each frequency bin, making it challenging to distinguish indi-
vidual paths. To clarify this problem, let us first establish the formu-
lation. Specifically, we represent the phase increment between two
consecutive frequency bins for the 𝑖-th path with Ω𝑖 = 𝑒− 𝑗2𝜋 𝑓Δ𝜏𝑖 .
Similarly, we use 𝛾𝑖 = 𝑎𝑖𝑒

− 𝑗2𝜋 𝑓0𝜏𝑖 to denote the complex value
of the 𝑖-th path on the first (leftmost) frequency bin. Using these
notations, the received CFR of the 𝑁 paths are expressed as follows:

𝐻 [1]
𝐻 [2]
.
.
.

𝐻 [𝑀]

︸   ︷︷   ︸
H(𝑀×1)

=


1 1 1
Ω1 Ω2 Ω𝑁

.

.

.
.
.
. . . .

.

.

.

Ω𝑀−1
1 Ω𝑀−1

2 Ω𝑀−1
𝑁

︸                                    ︷︷                                    ︸
𝛀 (𝑀×𝑁 )


𝛾1
𝛾2
.
.
.

𝛾𝑁

︸︷︷︸
𝚪 (1×𝑁 )

(5)

where𝑀 is the number of frequency bins included in the PDP calcu-
lation; typically 100 in UWB. Essentially, the process of computing
PDP from CIR data involves solving Equation 5 to derive the ele-
ments of matrix 𝛀. However, due to the presence of two unknowns
(𝛀 and 𝚪) on the right-hand side and only one known (CFR vector
H) on the left-hand side, this equation cannot be straightforwardly
solved using standard linear algebra techniques.

We note that the matrix 𝛀 exhibits the Vandermonde property,
which motivates us to utilize the MUSIC algorithm [52] to solve
Equation 5. In accordance with the MUSIC algorithm’s convention,
we refer to the matrix 𝛀 as the steering matrix, where each column
is known as a steering vector. Originally developed for determining
the angle-of-arrival (AoA) of each incident signal in a uniform
linear antenna array, the MUSIC algorithm accepts the known left-
hand side matrix (corresponding to H in Equation 5) as input and
generates an estimate for every element in the steering matrix
of Vandermonde shape (which corresponds to H in Equation 5),
without requiring knowledge of 𝚪. It is worth pointing out that
the MUSIC algorithm assumes uncorrelated incident signals and
requires a sufficient number of signals to be collected from the
antenna array. Consequently, to apply the MUSIC algorithm, H
and 𝚪 must be matrices with a rank greater than the number of
reflected paths 𝑁 , as opposed to vectors in Equation 5. The next
section illustrates how to transform H and 𝚪 into the required
matrices, while preserving the same steering elements, to prepare
them to be solved by the MUSIC algorithm.

4.1.3 CFR Transformation. The transformation of the CFR vector
is motivated by Spatial Smoothing [54], which rearranges the CFR
vectorH into a full-rankmatrix without altering any of the elements
in the steering matrix. The essential idea behind this procedure is
that if we could identify several subsets of Hwith the same steering
elements as the initial H, these subsets would be combined to form
a full-rank matrix. The details are explained as follows:
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Figure 6: UMusic selects subsets of original vector H to create
a new matrix H′.

The selection of subsets of p elements from H to form the
columns of the new matrix H′ is depicted in Figure 6. The new
steering matrix, 𝛀′, is identical to the original 𝛀. Since H′ is the
product of the full-rank matrix 𝛀′ and 𝚪′, which is a scaled version
of the Vandermonde matrix and also full-rank, UMusic successfully
transforms the CFR vectorH into a full-rank matrixH′. The size of
the matrix 𝛀′ is 𝑝×𝑁 , while the size of 𝚪′ is𝑁 ×𝑞. As both matrices
are full-rank, the rank of 𝚪′ is min(𝑞, 𝑁 ), and the rank of H′ is
min(𝑝, 𝑞, 𝑁 ). To meet the rank requirement for H′ and 𝚪

′, which
must exceed the number of reflected paths 𝑁 , we select values of 𝑝
and 𝑞 that are greater than 𝑁 . This ensures that the requirement
for using the MUSIC algorithm to obtain the PDP is satisfied. We
can then input the matrix H′ into the MUSIC algorithm to obtain
the high-resolution PDP, consisting of 𝜏1 to 𝜏𝑁 .

In UWB, the number of frequency bins,𝑀 , is typically 100, and
the number of reflected paths within the 2𝑚 × 2𝑚 in-car area is
limited. This implies that there are many choices for the values of
𝑝 and 𝑞. However, if we carelessly select the combination of 𝑝 and
𝑞, it could lead to poor PDP performance. An example to illustrate
this is provided next.
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Figure 7: PDP calculation result using balanced and imbal-
anced settings for the matrix 𝛀

′ and 𝚪
′.

Consider the two paths shown in Figure 5 as an example. The
resulting PDP calculated by (𝑝 = 50, 𝑞 = 50) has more significant
peaks than the result obtained with (𝑝 = 90, 𝑞 = 10), as illustrated
in Figure 7. This is because the corresponding steering vectors⃗⃗ ⃗⃗ ⃗⃗ ⃗
Ω1 = [1,Ω1, . . . ,Ω

𝑝−1
1 ]⊤ and

⃗⃗ ⃗⃗ ⃗⃗ ⃗
Ω2 = [1,Ω2, . . . ,Ω

𝑝−1
2 ]⊤ are less dis-

tinguishable under (𝑝 = 90, 𝑞 = 10) than under (𝑝 = 50, 𝑞 = 50).
Specifically, the maximum phase change for each steering vector
is given by Ω

𝑝−1
1 and Ω

𝑝−1
2 , which are (𝑝−1)𝜋

100 and 1.5(𝑝−1)𝜋
100 , re-

spectively. When 𝑝 = 10, the difference between these two phases
is only 0.095𝜋 , which is insufficient to distinguish between the two
paths. In a practical low SNR environment, the results could be
even more degraded. Since the values of 𝑝 and 𝑞 are constrained
by the number of frequency bins,𝑀 , such that 𝑝 + 𝑞 ≤ 𝑀 , UMusic
must carefully select 𝑝 and 𝑞 to maximize the phase change over
the steering vectors. Therefore, by selecting 𝑝 = 𝑞 = 𝑀/2, UMusic
maximizes the phase change over the steering vectors, which leads
to the maximum achievable SNR.
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Figure 8: The examples of PDP estimation with a sampling
time offset (red) and without a sampling time offset (blue).

4.1.4 Immunity to Hardware Imperfections. As the CIR data is ob-
tained from the UWB PHY layer, any hardware imperfections in the
components of the PHY layer may result in an inaccurate matrix
H′ and subsequently affect the PDP calculation. In this section, we
will show that our PDP calculation is robust and can be immune to
the hardware imperfections.

Essentially, hardware imperfections can introduce three major
errors in the CIR data, including: (i) carrier frequency offset (CFO),
denoted as 𝑓𝐶𝐹𝑂 , which arises due to unsynchronized oscillators
in the UWB transmitter and receiver, causing a slight mismatch
between the mixer at the receiver side and the center frequency of
the transmitted UWB signal; (ii) sampling time offset 𝜏Δ, which is
caused by unsynchronized analog-to-digital converters (ADCs) that
sample the signal with a random time shift; and (iii) initial phase
offset 𝜃Δ, which is an inherent and unknown phase value imposed
on RF devices when they are powered on. In the presence of these
imperfections, the received CFR is formulated as ˆ𝐻 [𝑘]:

ˆ𝐻 [𝑘] =
𝑁−1∑︁
𝑖=0

𝑎𝑖 𝑒
− 𝑗2𝜋 (𝑓𝐶𝐹𝑂+𝑓0+(𝑘−1) 𝑓Δ ) (𝜏𝑖+𝜏Δ )+𝜃Δ

=

𝑁−1∑︁
𝑖=0

Ω̂𝑖
𝑘−1

𝛾𝑖

(6)

where Ω̂𝑖 = 𝑒− 𝑗2𝜋 𝑓Δ (𝜏𝑖+𝜏Δ ) and 𝛾𝑖 = 𝑎𝑖𝑒
− 𝑗2𝜋 (𝑓𝐶𝐹𝑂+𝑓0 ) (𝜏𝑖+𝜏Δ )+𝜃Δ . It

is important to note that the effects of CFO and random initial phase
are confined to 𝛾𝑖 , which implies that these hardware imperfections
do not affect the steering matrix. Additionally, since the MUSIC
algorithm does not require knowledge of 𝛾𝑖 to calculate the steering
matrix, any variations in 𝛾𝑖 will not alter the PDP calculation result.
Therefore, our high-resolution PDP calculation is immune to the
effects of CFO and random initial phase.

The sampling time offset affects all estimated paths simultane-
ously by introducing a delay of 𝜏Δ, which results in a shift of all
estimated peaks by the same amount. As shown in Figure 8, all
peaks have a delay of 0.1 ns compared to the case without sampling
offset. The relative distance between two peaks (paths) remains
unchanged, irrespective of the sampling offset, which is critical for
aligning all calculated PDPs, as described in Section 5.3. With this
analysis, it can be concluded that our high-resolution PDP is im-
mune to the three hardware imperfections mentioned above. This
immunity is a unique advantage of our approach compared to ex-
isting wireless sensing works, such as SpotFi [24] and Seirious [27],
which are significantly impacted by these imperfections and re-
quire additional designs to compensate for their effects. Moreover,
unlike SpotFi, which relies on a multi-antenna setup in WiFi to
decompose reflected paths, UMusic requires only a single antenna
configuration in UWB, thanks to its novel formulation for UWB
signal decomposition and optimal solution derivation. In the next
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a new reflection (peak marked in the green box).

Figure 9: Example of how human occupancy changes the
in-car signal propagation.

section, we will demonstrate how UMusic detects car occupancy
by utilizing the high-resolution PDP.

4.2 Car Occupancy Detection using PDP
The detection of car occupancy primarily relies on our observation
that the human body only affects signal propagation paths that are
longer than the LoS path (TX-body-RX), while the shorter paths
remain unaffected. To illustrate this observation, we compare the
PDP obtained under two conditions: an empty car (without people
occupancy) and a car with a person sitting in the right back seat,
as shown in Figure 9. The results in Figure 9(b) demonstrate the
newly created reflection caused by human occupancy. Specifically,
the newly created reflection has a delay of 6.4 ns, which is 3.1 ns
later than the first path (3.3 ns), while the remaining three peaks
remain unchanged. This delay of 3.1 ns corresponds to a distance
of 0.93 m, which is the additional length of the Tx-body-Rx path
compared to the Tx-Rx path (1 m), thereby confirming the validity
of our observation.

Using this observation and the high-resolution PDP, car occu-
pancy detection can be achieved by comparing the PDP collected
without people to the PDP obtained under the current status. As the
in-car layout is limited to a 2𝑚×2𝑚 area, we only compare the PDP
within the first 4 meters for occupancy detection, while PDPs longer
than that are disregarded as they correspond to non-Tx-body-Rx
paths. To enhance occupancy detection, UMusic utilizes the deploy-
ment of multiple UWB devices and simple classification models.
Our evaluation shows that, with the support of high-resolution
PDP, even traditional classification models like SVM can reach an
accuracy of 90.2% for in-car occupancy detection.

5 EFFICIENCY ENHANCEMENT
UMusic’s efficiency is further enhanced by three additional features.

5.1 Computational Cost Optimization
This section reduces computational costs to facilitate UMusic’s in-
tegration into onboard systems without overburdening resources al-
ready runningmultiple applications. As the solver for high-resolution
PDP calculation, the MUSIC algorithm takes𝑂 (𝑝3) time complexity,
which is dominated by the heavy eigenstructure decomposition of
the covariance matrix of H′ (size of 𝑝×𝑞) [18]. However, since 𝑝 and
𝑞 have already been optimized, directly reducing these parameters
would lead to a decrease in the precision of the PDP.

Our approach to achieving complexity reduction without com-
promising PDP precision is depicted in Figure 10. Here, we reduce
the size of H′ by a factor of 𝐷 by downsampling the matrix H′,
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Figure 10: Downsampling the matrix H′ by 𝐷 to reduce the
computational cost.
resulting in a complexity reduction of 𝐷3. For ease of understand-
ing, we assume that 𝑝 and 𝑞 are multiples of 𝐷 . By evenly selecting
one CFR element from every 𝐷 elements, we obtain a downsam-
pled CFR matrix, referred to asH𝐷 , which can be decomposed into
two matrices, namely 𝛀

𝐷 and 𝚪
𝐷 . Although the 𝑖-th downsampled

steering vector
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
Ω𝐷
𝑖

= [1,Ω𝐷
𝑖
, . . . ,Ω

𝑝−𝐷
𝑖

]⊤ has only 1
𝐷

of the ele-
ments compared to the steering vector

⃗⃗ ⃗⃗ ⃗⃗⃗
Ω𝑖 = [1,Ω𝑖 , . . . ,Ω

𝑝−1
𝑖

]⊤, the
PDP calculated from this downsampled matrix remains accurate.

The high precision is ensured by the substantial phase change
over the downsampled steering vector. The phase change over
the downsampled steering vector

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
Ω𝐷
𝑖
is given by 2𝜋 𝑓Δ (𝑝 − 𝐷)𝜏𝑖 ,

which is 2𝜋 𝑓Δ (𝐷 − 1)𝜏𝑖 less than the phase change over the original
steering vector. The lost, 2𝜋 𝑓Δ (𝐷 − 1)𝜏𝑖 , is negligible, and thus
downsampling does not alter the correlation between the steering
vectors of different paths.
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Figure 11: The correlation of two steering vectors maintains
the consistency over the downsampling factor 𝐷 .

This is validated in Figure 11(a), where the correlation between⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
Ω𝐷
1 and

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
Ω𝐷
2 is compared at different downsampling factors, even a

six-fold reduction. The results indicate that the correlation between⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
Ω𝐷
1 and

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
Ω𝐷
2 remains relatively close, even after downsampling. To

provide a more comprehensive evaluation, we simulate the steering
vectors of 1000 different paths and calculate their correlation for
various downsampling factors. The results, shown in Figure 11(b),
indicate that the accuracy of the PDP calculation remains unaf-
fected and consistent across different D values. Since the MUSIC
algorithm primarily relies on the correlation between different
paths, preserving this correlation is crucial for downsampling to
reduce computational costs without losing PDP precision.

5.2 Aliasing Avoidance
Despite the effectiveness of computational cost reduction, the side
effect of downsampling is aliasing, where two different path yields
the same steering vector. This is formally defined as

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
Ω𝐷
1 =

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
Ω𝐷
2 ,

while 𝜏1 ≠ 𝜏2. Then, the two aliased paths follow:
2𝜋𝐷𝑓Δ𝜏1 = 2𝜋𝐷𝑓Δ𝜏2 mod 2𝜋

⇐⇒ 𝜏1 = 𝜏2 −
𝑟

𝐷 𝑓Δ
, 𝑟 ≥ 1 (7)
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Figure 12: The amplitude of CIR data collected from an in-car
experiment demonstrates the long tail trend for 100 taps (or
equivalently 100 ns).

where 𝑟 is an integer. Aliasing causes erroneous results in high-
resolution PDP calculation because the longer path (i.e., 𝜏2) confuses
the computation of the short path (i.e., 𝜏1) if they satisfy the rela-
tionship specified in Equation 7. In fact, this relationship is easy to
meet in the in-car environment.

Equation 7 implies that aliasing happens 𝜏1 = 𝜏2 − 50 ns, when
𝐷 = 4, as illustrated in Figure 12, where the aliasing problem
between the two regions with 50 ns (taps) gap. Since in-car sig-
nal propagation has a fairly long tail due to the signal frequently
bouncing in compact and metal car structures, the aliasing issue is
inevitable if using downsampling.

f

CIR of two regions

FFTΩ!""!+ Ω#""#

(a) Aliasing involved.

CIR

FFT

f

Ω!""!

(one region)

(b) Aliasing free.

Figure 13: Illustration of aliasing caused by involving two
regions in FFT calculation and aliasing avoidance via exclud-
ing the second region.

To overcome the aliasing issue, we exclude the regions that could
alias the first eight CIR taps. This protects the PDP calculation for
the first 2.4 meters environment because this range is mainly lever-
aged for in-car occupancy detection as illustrated in Section 4.2. As
illustrated in Figure 13, by excluding the second region, FFT results
only contain the paths within the first region, thereby free from
aliasing. This also brings another benefit: involving less number of
CIR taps into FFT calculation naturally expands the channel spacing,
i.e., 𝑓Δ, which is equivalent to downsampling the CFR matrix.

5.3 PDP Synchronization
Affected by the sampling offset, the calculated PDP results suf-
fer from severe misalignment, as depicted in Figure 14(a). As of
1ns sampling offset, the corresponding misalignment (30 cm) is
significant enough to cause the wrong comparison of PDP, even
misleading the occupancy detection result. To synchronize the PDP
calculated from different UWB packets, we leverage the insight in
Section 4.1.4, where the relative distance between the peaks in PDP
is immune to the sampling offset. Specifically, the first peak in the
PDP result corresponds to the Tx-Rx path, which is the shortest
one compared with all other paths. This path length is fixed since
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Figure 14: The PDP results with/without synchronization.

the Tx and Rx are tightly attached to the car. Therefore, by aligning
the first peak in the PDP results, all PDPs are synchronized. As Fig-
ure 14(b) shows, the second peaks in two PDPs are also aligned after
the synchronization of the first peak. This concludes all designs of
UMusic. Next, we will demonstrate the evaluation of UMusic.

6 EVALUATION
6.1 Implementation

UWB 
Devices

Seat 

1
1 2
3 4

2 3

4

UWB 

5 6 7
8

Figure 15: UMusic leverages the UWB devices deployed to
the eight locations inside a sedan parked in a garage.
System Implementation:We implement UMusic in Python codes
(i), collect CIR data from Radino DW1000 2 modules [50], (ii), calcu-
late high-resolution PDP. (iii), recognize the car occupancy status
via representative classification models. Moreover, we implement
CarOSense as the State-of-the-Art (SoTA). Our approach for process-
ing the CFR vector H is based on the PyArgus tool [45]. We select
an SVM model as an occupancy detection model, implemented by
directly calling svm.SVC() by default provided by scikit-learn [44].
Moreover, UMusic is implemented on a Mac M1 computer config-
ured to use a single CPU and a single thread, without relying on
GPU acceleration or any specific hardware needs from the Mac M1.
SoTA Approach: CaroSense [32] feeds the raw CIR data collected
from eight UWB sensors deployed in a car into a deep learning
model, which incorporates MIMO and masking techniques to de-
termine occupancy status.
Data Collection: Our evaluations include comparing UMusic with
SoTA system, CarOSense [32] utilizing the same setup and dataset,
for fairness. As Figure 15 depicts, eight UWB devices are posi-
tioned in a sedan at the following locations: 1 (front-left ceiling), 2
(rear-view mirror), 3 (front-right ceiling), 4 (center panel), 5 (back-
center ceiling), 6 (back-left ceiling), 7 (back-right ceiling), and 8
2DW1000 is chosen to demonstrate the concept as it is commercially available [11] and
the UMusic is easily portable to any UWB device as all of them support CIR extraction.
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Figure 16: Comparison of UMusic andCarOSense in detecting
various numbers of people in a car.

(trunk). We also evaluate UMusic in an SUV with only four UWB
devices deployed to showcase its generalizability with fewer UWB
devices in Section 6.6. We employ nine volunteers with different
bio-metrics (height: [165cm, 182cm]; weight: [125lb, 185lb]) 3. We
evaluate UMusic and SoTA for one to four people occupancy detec-
tion, under various scenarios, including car status (stationary or
driving), car models (sedan or SUV), and out-car environment
(indoor or outdoor). Volunteers are instructed to sit in different
positions within the car and are free to move their bodies, hands,
and legs, allowing them to adopt relaxed postures, such as using
smartphones or talking with other passengers. For example, when
evaluating UMusic’s performance for detecting 2 people, two volun-
teers occupy all possible combinations of two seats. The CIR data is
collected in a round-robin manner, where each UWB device takes
turns transmitting UWB packets, while the other devices collect
CIR data. During each round of data collection, data is collected
for 10 minutes, with 20 CIR sample data collected every second,
resulting in 12K CIR sample data per round. The dataset is divided
into training, validation and testing set in a 7:2:1 ratio. All experi-
ments are approved by our institution’s Institutional Review
Board (IRB).
Evaluation Metric: We utilize accuracy to evaluate the perfor-
mance of in-car occupancy detection. Since volunteers are instructed
to occupy all possible seat combinations, we also measure accuracy
per seat to evaluate performance in detail for each individual seat.

6.2 Overall Performance
This experiment evaluates UMusic and CarOSense with the car
parked in a garage, while no other objects are outside the car. As
illustrated in Figure 16, we compare the accuracy of UMusic and
CarOSense across different configurations for the number of people.
The median accuracy of UMusic for 1 to 4 people is 97.2%, 93.3%,
87.2%, and 83.1%, respectively, representing improvements of 16.8%,
17.9%, 14.3%, and 13.7% compared to CarOSense, which achieves
median accuracies of 83.2%, 79.1%, 76.3%, and 73.1%, respectively.
This result demonstrates that our high-resolution PDP effectively
captures the significant changes in signal propagation due to human
occupancy, allowing traditional classification models like SVM to
achieve an overall accuracy of 90.2%, outperforming CarOSense by
15.7%. Moreover, the detailed FP and FN of UMusic and CarOSense

3We do not evaluate UMusic for detecting small children due to the necessity of
thorough IRB processing; however, the recently available standardized in-cabin child
substitutes [1] could be useful for such evaluations in the future.

Number of People CarOSense UMusic
FP FN FP FN

1 People 8.7% 8.1% 1.5% 1.3%
2 People 11.5% 8.4% 3.2% 3.5%
3 People 10.9% 12.8% 5.8% 7.0%
4 People 12.1% 14.8% 9.3% 7.6%

Table 1: Comparison of False Positives (FP) and False Nega-
tives (FN) between CarOSense and UMusic.

are provided in Table 1, where UMusic achieves a lower error rate
with respect to the number of people. Notably, this accuracy could
be further improved by aggregating results from the CIR collected
at multiple time slots, as discussed in Section 6.5. Moreover, al-
though the posture of lying in the backseat is not included in the
experiments, this posture should still signal to UMusic that both
backseats are occupied. To illustrate the detailed accuracy per seat,
we provide a breakdown of the overall evaluation next.
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Figure 17: Accuracy under single-person scenario.
6.2.1 Single-person Detection. Detecting a single person is essen-
tial for identifying when a person is left in the car. This experiment
demonstrates the accuracy of UMusic and CarOSense in detecting a
single person per seat in the car. The results are shown in Figure 17,
where seat index 0 indicates nobody is in the car. The accuracy
varies across different seats but remains above 95%, with the highest
accuracy of 98.6% achieved at Seat #3; this is a 28.2% improvement
compared to CarOSense’s 80.4%. Similarly, UMusic’s accuracy is
higher than CarOSense across all seats.
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Figure 18: Accuracy for multiple-people detection.

6.2.2 Mutiple-people Detection. As shown in Figure 18, when the
number of occupants in the vehicle gradually increases, the accu-
racy of UMusic experiences a decline. For Seat #1, the accuracy is
92.3% when there are two people in the vehicle, which drops to
86.3% with three occupants, and further decreases to 82.1% when
the number of occupants increases to four. The results for other
seats are similar to those for Seat #1, as the reflected paths in the con-
fined space of the vehicle become more complex with an increasing
number of occupants, leading to deviations in PDP estimation.
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Figure 19: Accuracy of UMusic under stationary (engine
on/off) and driving scenarios.

6.3 Stationary vs Driving
To evaluate the robustness of UMusic, we conduct experiments
in driving scenarios, where one person occupies the driver’s seat
while others take turns sitting in the other three seats. The results
in Figure 19 indicate that driving and stationary (engine on) have a
slight impact on occupancy detection accuracy compared to when
the car is stationary and the engine is off. This is likely due to the
random shakes experienced when during these two cases, which
can affect the collection of CIR data since the attachment to in-car
objects may not be entirely stable.
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Figure 20: Different out-car environments.

6.4 Impact of Out-car Environments
The metal structure of a car confines wireless signals, preventing
the weak in-car RF signal from leaking out of a car and the out-
car signals from penetrating into the car. To apply UMusic to the
practical scenarios, we evaluate the performance under different
out-car environments, as depicted in Figure 20. Figure 21 illustrates
the performance of UMusic under different out-car environments.
When there is only one occupant in the car, UMusic can accurately
detect the occupant, with detection accuracy in different scenar-
ios all above 94%. As the out-car environment changes, there is
no significant change in detection accuracy, indicating that the
out-car environment has a negligible impact on UMusic for in-car
occupancy detection.

6.5 Aggregated Performance
Although the CIR data is collected every 50 ms using the Radino
UWB DW1000 module and UMusic can provide results within that
interval, users may only require the in-car occupancy system to

Indoor1 Indoor2 Outdoor1 Outdoor270

80

90

100

Ac
cu

ra
cy

(%
)

1 People
2 People

3 People
4 People

Figure 21: Accuracy under different out-car environments.
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Figure 22: UMusic’s accuracy when aggregating multiple de-
tection results, each obtained within 50 ms.

deliver results once per second. This allows us to aggregate de-
tection results over multiple CIR data samples to improve overall
performance during that period. In this experiment, we combine
the results from multiple detections and use a majority vote to
estimate the in-car occupancy more accurately. As shown in Fig-
ure 22, after aggregating two to six occupancy detection results,
UMusic achieves the accuracy of 93.5%, 96.7%, 98%, 98.4%, and 99.4%,
respectively. This also shows that UMusic can achieve over 98%
occupancy detection accuracy with just three aggregated results.

6.6 Impact of Different Car Models and UWB
Devices Deployment
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indicating that the SUV is unoccupied.

Figure 23: UMusic performance in an SUV.

To verify the versatility of UMusic, we evaluate occupancy detec-
tion in each seat in an SUV with only four UWB devices deployed,
as depicted in Figure 23(a). Four UWB devices provide CIR data
of 12 links, from which UMusic estimates the occupancy status.
Figure 23 shows the occupancy detection results of aggregating six
consecutive estimations. Although only four devices are employed
in this experiment, the accuracy of occupancy detection remains
high in the SUV, all above 93%, showing the effectiveness of UMusic.
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Figure 24: Impact of the number of sensors.

6.7 Impact of the Number of UWB Sensors
To evaluate the impact of the number of sensors on UMusic’s perfor-
mance, we gradually reduce the number of sensors deployed in the
vehicle from eight to three, measuring its accuracy under different
occupancy status. Specifically, we use data collected from different
combinations of UWB sensors, as described in Section 6.1, to simu-
late varying numbers of UWB sensors. The sensor combinations
(1,2,3,4,5,6,7), (1,2,3,5,6,7), (1,3,4,5,7), (1,3,5,7), and (1,3,6) correspond
to setups with seven to three UWB sensors, respectively. As shown
in Figure 24, when eight sensors are used, UMusic achieves the av-
erage accuracy rates of 99.6%, 95.8%, 90.4%, and 85.8% for different
occupancy status. When the number of sensors is reduced to 4, the
accuracy slightly decreases but remains high at 97.2%, 93.3%, 87.5%,
and 83.1%, with the decline within 3%. However, when the number
of sensors is further reduced to 3, the detection performance shows
a more noticeable decline, due to the reduced spatial diversity in
PDP data.

6.8 Performance on Unseen Passenger
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Figure 25: Performance on seen/unseen passengers.

To evaluate UMusic’s performance on seen/unseen passengers,
we adopt the following dataset splitting strategy: data from five
randomly selected volunteers is designated as the seen dataset,
while data from the remaining four volunteers constitutes the un-
seen dataset. The model is trained on the seen dataset, which is
further split into a training set and a testing set in an 8:2 ratio. To
evaluate unseen passengers, the trained model is applied to the
unseen dataset, which contains data from four volunteers. Since
the seen dataset includes five passengers and the unseen dataset
includes four passengers, the evaluation encompasses all occupancy
statuses (from 1 person to 4 people). This process is repeated for all(9
5
)
possible combinations of seen and unseen datasets, along with

the corresponding models and results. Figure 25 shows UMusic’s
accuracy across various in-vehicle occupancy status, where the
average accuracy for seen passengers is 96.2%, 92.3%, 86.2%, and
83.5%, while the average accuracy for unseen passengers is 94.7%,
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Figure 26: Performance under environment augmentation.

90.1%, 83.1%, and 78.2%, respectively. These results demonstrate
that UMusic achieves high recognition accuracy even for unseen
passengers, with only a slight reduction in accuracy compared to
the performance on seen passengers.

6.9 Impact of Environment Augmentation
This evaluation considers three scenarios: placing a small box or
bag on each seat, folding down the backseats, and pushing the
front passenger seat back. To evaluate UMusic in these scenarios,
we leverage the phenomenon that environmental augmentations
remain static, while passengers typically exhibit unpredictable mo-
tion. By concatenating multiple consecutive CIR measurements into
the SVM model, UMusic identifies occupancy status by capturing
path changes caused by passengers, as described in [21]. Figure 26
illustrates UMusic’s performance under environmental augmenta-
tion, with each line representing the average accuracy across four
different occupancy statuses (1 to 4 people). Specifically, under the
seat-pushed-back scenario, the average accuracy of UMusic is 85%,
92.4%, 96.4%, 98.7%, 99.4%, and 99.8% when one to six consecutive
CIR measurements are concatenated as features for the SVM model,
respectively. Meanwhile, the other two scenarios are similar.

In addition to the three scenarios that modify the in-car environ-
ment, UMusic is also capable of handling changes in the out-car
environment, such as the use of sunshades. These are typically
installed when passengers exit the vehicle, at which point the car is
turned off. Since UMusic can detect a pet or passenger left behind
within a few seconds after the engine is switched off, it does not
need to operate continuously afterward. As a result, the presence
of foil-like sunshades does not affect the functionality of UMusic.

6.10 PDP Calculation Precision
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Figure 27: Comparison of UMusic and the groundtruth in the
PDP, derived from the eight simulated paths.

While our evaluations demonstrate UMusic’s performance in
real-world scenarios, this section presents simulations to show-
case PDP calculation performance in a controlled setting, where
obtaining ground truth path lengths is challenging in real-world
experiments. Specifically, our simulations are conducted to answer
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three major questions: (i), how many paths could be precisely re-
solved by the high-resolution PDP calculation? Since the in-car
signal propagation is very complex, manufacturers are concern-
ing the limit of our PDP calculation. (ii), are the three hardware
imperfections fully immune? The quality of UWB radio varies for
different manufacturers. We should confirm the PDP is robust to
these issues even for the hardware with the worst quality. (iii),
how could the computational cost reduction affect the precision of
PDP calculation? The onboard computer is less powerful than our
laptops. It also runs many interior systems, leaving limited compu-
tational resources for UMusic. Our simulation should demonstrate
the effectiveness of computational cost while maintaining the PDP
calculation precision. To fit into the car’s interior area (2m× 2m),
our simulation focuses on paths that are less than 1.8 meters. The
detailed simulation for the above three aspects is shown in the
following sections.

6.10.1 Performance vs Number of Paths. In this simulation, we
uniformly insert different paths into the 1.8 m compact in-car area.
For instance, when we insert eight paths into the 1.8 m range, we
control the average interval between two consecutive paths to be
1.8/8 = 0.225 meters. We also consider the regulation of the FCC
about the maximum SNR of UWB signal (≤ −40dB/MHz [48]) in
our simulation. Figure 27 depicts an example PDP calculation result
of 8 paths and the corresponding groundtruth PDP used for that
simulation. This result intuitively shows that the calculation error
is quite small, indicating the high precision of our design.
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Figure 28: High-resolution PDP calculation performance vs
the number of paths in small range (1.8 m).

We also summarize the simulation results into two statistics
shown in Figure 28. The result in Figure 28(a) shows the PDP cal-
culation error when we insert seven, eight, and nine paths into the
1.8 m range. It is worth mentioning that for a 500MHz bandwidth
UWB channel, the 1.8 m range corresponds to only six CIR taps,
which is saturated by our 7-9 paths for pushing the PDP calcu-
lation into the limit. For each result, we repeatedly generate the
uniformly distributed paths 1000 times to guarantee the effective-
ness of this simulation. In specific, the average interval between
two consecutive paths for the seven, eight, and nine paths scenarios
are 1.8/7 = 0.257, 1.8/8 = 0.225, and 1.8/9 = 0.2 meters.

Due to the large gap between the two paths, the average calcula-
tion error for seven paths is 0.0001 m. When we insert eight paths,
the error increase to 0.015m, while the error becomes 0.036 m if
we insert nine paths. This is also validated by the CDF shown in
Figure 28(b). This result shows that UMusic is able to recognize 7-9
paths which mainly reside in the six CIR taps (1.8 m).
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Figure 29: PDP calculation performance under three types
of hardware imperfections.

6.10.2 Performance under Hardware Imperfection. Our simulation
for hardware imperfection strictly follows the parameters, specifi-
cally CFO, provided by the commodity device’s datasheet. As speci-
fied in DW1000 datasheet [48], the oscillator has a maximum drift
of ±20ppm, resulting in the CFO maximum at the ±69.8KHz. In our
simulation, we manually insert the 11 different CFO from −100KHz
to 100KHz to cover all potential cases even much worse than the
datasheet specifies. Moreover, we impose the sampling offset and
random initial phase offset to the simulated CIR data to complete
the verification for hardware immunity. CFO, initial offset, random
sampling time offset. The overall PDP calculation error is shown
in Figure 29(a), where the average error is 0.016 m, which matches
with the 8 paths calculation result in Section 6.10.1 obtained under
no hardware imperfections. In specific, we show the impact of each
hardware imperfection in Figure 29(b), 29(c), and 29(d), respectively.
These results demonstrate that the distribution of PDP calculation
error is constant even with various hardware imperfections, which
verifies the immunity of our high-resolution PDP calculation.
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Figure 30: Results of computational cost optimization.

6.10.3 With/Without Computational Cost Reduction. We evaluate
the time consumption for high-resolution PDP calculation. In this
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experiment, we reuse the simulated CIR data and their correspond-
ing groundtruth PDP information for eight paths within 1.8 m range.
We implement the downsampling design to reduce the computa-
tional cost on a Mac M1 computer, which is set to use a single CPU
and a single thread for PDP calculation. This experiment compares
the PDP calculation time and precision under the downsampling
factors 1, 2, and 4. When we downsample by a factor of 4, we set
𝑝 and 𝑞 to be 48 in order to make them the multipliers of 𝐷 = 4.
The detailed results are shown in Figure 30, where the average time
consumption is 3.38 ms, 1.15 ms, and 0.125 ms under the downsam-
pling factor of 1, 2, and 4 respectively. Compared to 𝐷 = 1, the time
consumption is reduced by 2.94 and 27.1 times. Meanwhile, the ac-
curacy experiences a negligible degradation due to downsampling,
as shown in Figure 30(b). This result supports UMusic to operate
in real-time since the interval between consecutive CIR collections
is 50 ms. As UMusic is intended for in-car systems powered by
the alternator, its energy consumption of UMusic is relatively low
compared to other in-car systems.

7 DISCUSSION AND FUTUREWORK
Impact of tall passenger. In the experiment, UWB devices are
mounted on the car’s ceiling to minimize the impact of tall passen-
gers. Even if an exceptionally tall passenger blocks the LoS path,
UMusic can handle this effectively. Although PDP synchronization
may be affected, this does not hinder occupancy detection, as the
blockage also impacts longer paths, making the shortest affected
path closer in length to the LoS path. Subsequently, this could be
captured by UMusic to detect the exceptionally tall passenger.
Distinguishability between the passenger and large luggage.
We note that luggage remains stationary, while passengers typically
display unpredictable motion. This distinction allows UMusic to
differentiate large luggage from passengers by tracking changes
in propagation paths over time, reusing PDP data collected for
aggregated detection, as studied in [21, 32, 87].
Extension to general sensing applications. While UMusic is
tailored for in-car occupancy detection due to strong signal reflec-
tions from the vehicle’s metal and compact structure, it can also
be adapted for broader sensing applications. Its core feature, high-
resolution PDP estimation, can be utilized in tasks like localization.
By using multiple UWB sensors as anchors, the precise PDP of
sensor links can enable accurate triangulation for localization.
Full support for HVAC and vital sign applications. UMusic is
designed to provide occupancy status, a prerequisite for HVAC sys-
tems, vital signmonitoring, and detect children left alone. Currently,
UMusic excels at occupancy detection, identifying the number of
passengers and their seating arrangements, which is suitable for
HVAC applications. However, UMusic requires further enhance-
ments to detect physiological signals such as heart rate, respiration
rate, and body temperature for vital sign monitoring [83, 91] and
other applications, which would be addressed in future work.

8 RELATEDWORK
Wireless sensing has been studied in numerous papers [27, 73] for
indoor localization [24, 56, 72, 80], location tracking [47, 73, 79],
floor mapping [31, 46], and motion tracking [84] . These designs,
which are categorized by the wireless techniques utilized, have

different advantages and limitations: (i), WiFi-based designs [24,
47, 56, 66, 68, 78] are easy for users to accept as the result of the
popularity of WiFi [69, 70]. (ii), Acoustic [7, 90] and vision [12]
based approaches have high precision while the privacy concerns
are yet to be addressed. (iii), mmWave radar is also applied for
sensing [30, 31, 36, 42, 58, 67, 73] and achieved both strong privacy
reservation and high effectiveness. (iv), UWB is recently applied
for precise localization [3, 43, 57, 60, 61, 63] and sensing [21, 32].
For instance, TALLA [63] achieves decimal-level localization and
tracking precision using time difference of arrival (TDoA), derived
from UWB communication. (v), Bluetooth [33, 65], LoRa [6, 15, 27,
74, 77], RFID [10, 75, 76] are also leveraged for sensing in various
scenarios, where the granularity is not strictly required.

For in-car scenarios, mmWave Radar [28, 30, 31, 42, 46, 73],
vision-based [12] and acoustic-based [90] approaches have high
sensitivity for occupancy detection. Vision-based solutions suffer
from occlusions, while acoustic-based solutions still face privacy
leakage issues. For instance, VeCare proposes the first Child Pres-
ence Detection (CPD) system that only utilizes car speakers and
microphones. To ensure a robust solution, these approaches require
additional hardware and associated installation costs. In addition,
customizing a low-cost tag is an effective solution for in-car sens-
ing [8]. This paper leverages UWB devices installed in the car for
occupancy detection. Existing UWB sensing solutions [21, 32] have
primarily focused on utilizing machine learning techniques, making
them sensitive to changes in the in-car environment. For instance,
CarOSense investigates the reuse of UWB keyless infrastructure
through a novel deep-learning model called MaskMIMO to detect
occupancy in each seat of a car [32]. UMusic, on the other hand,
utilizes signal processing techniques making the solution more
adaptive to the environmental effects. A combination of advanced
ML techniques with UMusic can potentially create more robust
hybrid models to detect and classify multiple occupancies in the
various car models. Development and analysis of such models are
left for future work.

9 CONCLUSION
This paper introduces UMusic, a system that uses commodity UWB
devices to precisely detect car occupancy via lightweight signal pro-
cessing techniques. UMusic converts CIR data into the frequency
domain to obtain the channel frequency response, which is used
to calculate the high-resolution PDP via the MUSIC algorithm.
Through the comparison between the PDP of empty and occupied
environments, UMusic is able to detect the occupancy status. We
evaluate UMusic in a car with one or more passengers under var-
ious scenarios, including stationary and driving conditions. The
experiments show that UMusic achieves an aggregated accuracy of
99.4%, highlighting its effectiveness in practical scenarios.
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