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Abstract—Automobile manufacturers are building cars with
passive keyless entry support – the ability for users to unlock
and start their cars while having the car keys ”in their pockets”.
In this regard, car manufacturers are currently installing Ultra-
Wideband (UWB) radios in cars owing to their robustness to
relay attacks and their precise ranging estimates. In this paper,
we explore the possibility of using these UWB radios (that exist
for keyless entry) as an orthogonal sensing modality. To test
this hypothesis, we build CaraoKey, the first system that exploits
the UWB keyless infrastructure as a ”sensor”. More specifically,
CaraoKey leverages the UWB radios to infer the state of a car
(empty, door, window or trunk open, person inside the car, etc.).
It does so by building a multipath profile based on the Channel
Impulse Response (CIR) that is computed by each UWB node.
We design and implement a 14-node system (a superset of all
possible node locations) and evaluate it at 7 different indoor
and outdoor locations while capturing a wide range of factors
such as cars, people, walls on the sides, etc. Our results indicate
that CaraoKey can distinguish 8 different car states with 98%
accuracy using 8 nodes, and nearly 94% accuracy using just 4
nodes.

I. INTRODUCTION

The keying system in automobiles has evolved significantly
from the initial usage of a mechanical key. Car manufacturers
have the passive keyless entry vision [1], [2] – a car automati-
cally unlocks itself when the person (who carries a compatible
device such as a key fob or smartphone) is in its vicinity,
and the car can be started only when the device is inside the
car. To realize this vision, the current state-of-the-art solution
uses LF-UHF (a combination of low-frequency and ultra high
frequency) channels. However, these systems can be subject
to relay attacks [2], [3] – as recent as October 2018 [4].
Consequently, car manufacturers are now developing Ultra
Wideband (UWB)-based solutions for keyless entry [5], [6],
[7]. These UWB systems are more robust to relay attacks as the
IEEE 802.15.4-2015 UWB standard [8] explicitly incorporates
timing information. In fact, the IEEE 802.15.4z Enhanced
Impulse Radio Task Group is currently tasked with developing
more accurate ranging methods with UWB keyless access as
one of its main pilot applications [9]. Given this impending
installation of UWB radios for keyless entry, we ask the
question if we could multi-purpose these UWB radios – i.e.
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leverage them for secondary use-cases beyond keyless entry.
More specifically, we explore the possibility of using the UWB
keyless infrastructure as a sensing modality.

Sensing systems that leverage an already existing infras-
tructure (e.g. Wi-Fi [10], [11], acoustic [12], visible light
infrastructure [13], etc.) can be used in three main ways –
(i) in a standalone manner that mitigates the need for extra
hardware resulting in cost, space and/or power savings, or (ii)
be used in combination with other sensing systems to improve
data fidelity, or (iii) to trigger a power hungry or more privacy
invasive sensing system like cameras. In this paper, we are the
first to explore the UWB keyless infrastructure of automotives
as a sensing modality. Such a sensing system that piggybacks
on the existing UWB infrastructure can enable several applica-
tions(e.g. intrusion/activity detection and occupancy counting).
We build CaraoKey, which explores the possibility of inferring
car states using these UWB sensors.

CaraoKey performs UWB-based sensing of car states by
leveraging the channel impulse response (CIR) computed by
UWB receivers. As shown in Figure 1, the CIR is indicative
of reflections in the environment, and changes as the state
of the car changes. CaraoKey captures these CIR changes to
identify the car state in two steps. First, it prunes the state
space (identifies the most likely states) by correlating the CIRs
observed by the receivers with a corpus of reference CIRs.
Next, it narrows down the car state by computing a multipath
profile, a measure of how the car is reflecting in each state
as observed by the UWB nodes. Figure 2 shows an example
of how two features contained in the multipath profile help
separate some of the states. However, CaraoKey must deal
with two key challenges while building the multipath profile.
Firstly, the UWB transceivers in the car are not synchronized.
Consequently, each CIR computed by a receiver will be
randomly shifted with respect to previously computed CIRs
from the same transmitter. CaraoKey addresses this challenge
by identifying the first (direct) path in the CIR, and aligning
the CIRs about this path, thus yielding a repeatable signature.
Secondly, CaraoKey must be robust to changes in the location
of the automobile (i.e. the same solution must work in a
multipath rich indoor garage, a parking lot with cars on the
sides, in free space, etc.). To address this challenge, CaraoKey
leverages the internal UWB nodes to build the multipath
profile which are more robust to location changes.

To test our hypothesis, we deploy 14 UWB nodes (placed978-1-7281-6630-8/20/$31.00 2020 © IEEE



Fig. 1: The CIR is representative of the
multipath reflections inside the car.
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Fig. 2: An example of two features in the
multipath profile that aid in state identification.

Fig. 3: UWB packet and UWB symbol struc-
tures.

inside and outside the car) in two different configurations of a
sedan. These node locations are chosen from a superset of
possible node locations [14], [15], [16]. This allows us to
determine optimal number of nodes and their locations for
CaraoKey which can further motivate manufacturers to install
UWB nodes at those locations. A typical keyless solution may
have up to 8 nodes depending on make/model and OEMs’
preference, where up to 4 nodes may be external. We evaluate
CaraoKey at 7 different physical locations – 2 indoor locations
in a multipath rich garage, and 5 outdoor locations with
cars, people, walls on the sides, etc. We show that using 8
UWB nodes, CaraoKey can distinguish between the 8 states of
interest with an accuracy of 98%. In comparison, a system that
is based on received signal strength (RSS) (e.g. Bluetooth),
achieves only 49% accuracy. We then show that using only 4
nodes, CaraoKey can achieve a comparable accuracy of 94%.

In summary, the paper makes the following contributions:
• CaraoKey is the first system that leverages the UWB

keyless infrastructure in automobiles as a sensing modal-
ity. As a first application, it demonstrates the sensing
capability by inferring the state of a car.

• We show that the interior UWB nodes are more conducive
for car interior sensing and more resistant to location
changes than the exterior nodes. We identify these con-
ducive UWB node locations for states sensing by build-
ing a node connectivity profile and performing receiver
selection analysis on a multi-node real car testbed.

• CaraoKey is built in a manner that does not warrant
any UWB node synchronization and is robust to location
changes. It works via a two-step process of building a
multipath profile – a measure of how the car reflects
in each state. This profile is constructed from the CIR
computed by UWB receivers.

• Upon prototyping on standards-compliant hardware and
evaluating at 7 diverse indoor and outdoor locations,
CaraoKey identifies the states of interest with 98% and
94% accuracy using 8 and 4 UWB nodes respectively.

II. RELATED WORK

Sensing systems that leverage an existing infrastructure have
interested the research community with numerous Wi-Fi [10],
[11], [17](and other RF modalities [18]), acoustic [12] and

visible-light based sensing systems [13]. There also exists
systems that leverage these infrastructure in cars to sense
context of recognizing gestures for hands-free control [19],
detecting phone usages while driving [20], tracking the drivers
head [21], sensing driver distractions [22], etc. Our work is
different from these systems in that we use a different sensing
modality, UWB, to infer car states. Comparing with other
UWB sensing work of identifying materials and their qual-
ity [23], or counting people walking through doorways [24],
CaraoKey performs UWB sensing in the context of automo-
biles by computing a multipath profile from the CIR computed
by UWB nodes. To the best of our knowledge, ours is the first
system that leverages UWB radios to infer car states.

III. APPROACH

Figure 4 provides an overview of CaraoKey’s working.
In this section, we start with a brief introduction of UWB
background and then elaborate each step of CaraoKey in detail.

A. UWB Background

In CaraoKey, a transmitter periodically beacons (blinks) an
UWB message. This blink message is in the IEEE 802.15.4
UWB format [8]. As shown in Figure 3, an UWB Packet
contains header (preamble, start of frame delimiter, PHY
header) and payload symbols. These UWB symbols travel over
the air across multiple paths and reach the receiver UWB nodes
(slaves). An UWB receiver uses the perfect periodic auto-
correlation property of the known preamble sequence [25] to
compute the impulse response of the channel. Said differently,
it runs a correlator that correlates the received signal with
the known preamble sequence to compute a channel impulse
response (CIR) which is given by :

h(t) =

L∑
l=1

αkδ(t− τl) (1)

where δ(.) refers to the Dirac delta function. CaraoKey uses
this CIR which is indicative of the L reflected paths, to identify
the car state by leveraging the intuition that the different states
affect the CIR differently.



Fig. 4: System overview
of CaraoKey

Fig. 5: Experiment
node deployment.
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Fig. 6: The average RSS for an interior UWB
transmission is higher and mostly symmetrical.

Fig. 7: CIR upsampling: Each receiver
upsamples its CIR via an FFT.

B. Connectivity Test – Transmitter Selection

In order to identify node locations to perform sensing of car
states via UWB nodes, we start from first principles. In other
words, we start by over-instrumenting a car with 14 nodes, as
shown in Figure 5, and then narrow down the node positions of
interest for car-state sensing. These 14 nodes are distributed
both inside and outside the car as UWB nodes for keyless
entry are expected to be placed both inside and outside to
precisely localize the access device. In the keyless system,
these nodes help the car unlock itself and set itself up by
adjusting seats, mirrors, powering on the rear-view camera,
HVAC, etc., depending on the “profile” of the associated
person who is in the vicinity of the car, and also start the
car only when the keyfob is ascertained to be inside the car.
The 14 UWB nodes are deployed as follows: four exterior
bumper nodes (nodes 1, 2, 5 and 6) - i.e. two nodes on either
side of the front and rear bumpers, two exterior nodes at the
center top on each side (nodes 3, 4), four interior nodes on
the four interior corners (nodes 7-10), a node on the rear-view
mirror (node 0), a node each behind the glove compartment
(node 11), on the interior light switch (i.e. center rooftop)
(node 12), and inside the trunk (node 13).

As a first step, in nodes selection, we test connectivity -
i.e. we ask the question, “which nodes can communicate with
which other nodes in the car?” For this, we park the car in
an indoor garage, and ask each of the 14 nodes to send 6000
blinks sequentially, and compute the blink delivery rate at each
node. We observe that most nodes can communicate with one
another except those in the trunk and the front bumper whose
connectivity suffers because of the distance and presence of
multiple signal attenuators along the path(s). From Figure 6,
we observe that the RSS for an interior transmission is on
average much larger than a transmission from an interior (or
exterior) node to an exterior (or interior) node, (or) between
two exterior nodes. This is primarily because of the lack of
any significant attenuating objects for an indoor transmission
such as metal (car frame). We also observe link symmetry - i.e.
given a pair of nodes Ni, and Nj , the RSS and blink delivery
rates in link L(Ni,Nj) is similar to the one in link L(Nj ,Ni).

With these observations, we set the node on the rear-

view mirror (node 0) as the transmitting node (tag), and the
remaining nodes as receivers (slaves). We choose node 0 as the
transmitter for the following reasons : (i) it can communicate
with all the nodes in the car at reasonably high power, (ii)
it creates a symmetric sensing region in the car from an
experimental standpoint (i.e. the observations made for states
on one side of the car will translate to the other side of the
car), and (iii) every car has a rear-view mirror.

C. CIR Upsampling

As mentioned earlier, each node that receives a blink
(transmitted by node 0) will have an associated CIR. Given a
Nyquist rate of 1GHz, each CIR tap is 1ns apart. We increase
the resolution of this CIR by upsampling [23]. This upsam-
pling process takes us closer to the original analog waveform,
and thus helps in more accurate alignment (Section III-D).
Figure 7 shows an example of upsampling. Specifically, we
take a fast Fourier transformation (FFT) of the time-domain
CIR y. Next, we zero-pad this frequency domain signal by
factor of N*(K-1), where N is the number of taps in the
CIR and K is the upsampling factor. Finally, we obtain
the upsampled CIR ŷ by taking the the inverse-FFT of the
upsampled frequency domain signal.

D. CIR Alignment

As the transmit and receive nodes are not synchronized, the
CIR frames computed by a receiver node are randomly shifted
with respect to one another. Figure 8 shows this misalignment
in 5 CIRs computed by a receiver node. While it is possible
to mitigate this by synchronizing the nodes via a common
reference clock, it will result in added cost and complexity as
the keyless setup does not require synchronization for its pri-
mary use-case. Consequently, each node performs alignment
by identifying an “event” that occurs in all CIRs independent
of the environment, and then shifting the location (tap) of that
“event” to a reference pivot tap. Said differently, each CIR is
shifted differently with the degree of a CIR shift depending
on the tap corresponding to the arrival of the first (direct)
path. As a result of this shifting, the first path of every CIR
computed by a node now occurs at the pivot. We point out
that this first path is not necessarily the strongest path and
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Fig. 8: The CIRs are mis-
aligned due to the absence of
transceiver synchronization and
receiver hardware imperfections.
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Fig. 9: Each receiver performs
CIR alignment by identifying the
tap corresponding to the first
path, and shifting it to a pivot tap.

Fig. 10: Raw CIRs for an
empty car as observed by an
interior and an exterior node
at 4 different locations.
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that the nodes in the bumpers can also observe the first path,
albeit heavily attenuated. Figure 9 shows the aligned version
of the 5 misaligned CIRs shown in Figure 8. The tap location
corresponding to the arrival of the first path, referred to as
First Path Index (FPidx) is typically exported by UWB chips
such as the Decawave DW1000 [26]. This first-path based
alignment benefits from upsampling, as the FPidx is at a much
finer resolution of 15.625ps [26] (compared to the raw CIR
1ns tap resolution). We also verified the alignment process by
computing the “lag” between any two CIRs received by a node
via cross correlation. We observed that the “lag” corresponds
to the difference between their first path indices.

E. Receiver Selection

Having aligned the CIRs received by a node with respect to
each other, we next ask the question, “which of the remaining
nodes can actually become receivers?” To answer this, we first
park the car at 4 different locations - two spots in an indoor
garage, an outdoor location with cars on either side and a
free-space setup (i.e. the car has nothing in its vicinity). We
set node 0 to transmit and the rest to receive. In each location,
we collect CIRs of different car states (empty, occupied,
door, window and trunk open). Next, we compute the average
Pearson correlation coefficient between the CIRs (of a given
state) computed in free-space (called Outdoor1) and all the
4 locations, for each of the internal and external nodes. This
correlation coefficient R̂ between two CIRs x and y of duration
t taps is given by:

R̂xy =

∑t
i=1(xi − x)(yi − y)√∑t

i=1(xi − x)2
√∑t

i=1(yi − y)2
(2)

where xi, yi refer to the CIR amplitude in the ith tap of CIRs
x and y respectively, and x, y refer to the sample mean of the
two CIRs.

From Figures 10 and 11, we observe that irrespective of the
location, the CIR of the internal nodes correlate much higher
than their external counterparts. This is because the internal
nodes are more robust to location changes than the external
nodes. The robustness arises primarily because the metallic
car frame acts like a shield from outside reflections. When the
doors/windows are open, the exterior reflections potentially
incident on some nodes (depending on the angle of reflection)
only affect a small portion of the CIR. Consequently, the

CIRs of a state continue to correlate better with itself than
any other state. Furthermore, we also look only at a narrow
CIR window of interest after the arrival of the direct path
(Section V-G). Consequently, given the increased robustness
to location changes, we use the internal nodes as receivers.

F. State Identification

CaraoKey leverages the CIR to identify the state of the car.
At a high level, it uses the fact that the changes in a car
state (door open, window open, trunk open, person inside,
etc.) alter the multipath reflections inside the car, which is
observed in the CIR. For example, an open door will eliminate
(or create) reflections that previously existed (or did not exist).
Such reflection changes are leveraged to infer the state. While
CaraoKey is described for a car state sensing application from
an intrusion detection standpoint (i.e. when the car is static),
it can also be used while the car is in motion as all the
transceivers experience the same relative motion. CaraoKey
performs this car state inference in two steps. In Step 1,
each node correlates its observed CIR with reference CIRs
(in a maintained corpus) to identify the top-K likely states
(Figure 12). Having pruned the state space, CaraoKey next
extracts features from the CIR – referred to as the Multipath
Profile (Figure 13), in order to identify the car state. We
next explain how CaraoKey differentiates the states of interest
shown in Figure 14.

1) Step 1: Maximum Likelihood Based State Pruning::
CaraoKey leverages the intuition that some states can be
captured better by some nodes, while other nodes observe a
CIR similar to Empty. We capture this intuition in Step 1 via a
Maximum Likelihood approach. Here, given an observed CIR
(by each node) due to a transmitted blink, each node votes on a
particular state based on correlation. CaraoKey then computes
the likelihood of being in each of the possible states, given
this vote. It then fuses the likelihood estimates from all the
nodes, to obtain the top-K (we use K=4) most likely states.
This is achieved in two phases : a training phase and a testing
phase, as shown in Figure 12.

Training Phase: We explain this phase by first defining
some notations. Let R = {R1, R2,..., Rn} be the set of n
(receiver) nodes deployed in the car. Let S = {S1, S2,..., Ss} be
the set of s car states of interest. Let Ci = {CS1

i , CS2
i ,..., CSs

i }
(1≤i≤n) be a corpus of reference CIRs maintained for each
state by a receiver Ri. Each node Ri first builds a likelihood



Fig. 12: CaraoKey prunes the state space by choosing the Top-K most likely states via a
Maximum Likelihood Approach based on CIR correlation with a reference corpus.

Fig. 13: CaraoKey computes a multipath
profile by extracting peak-based features
from each node’s observed CIR.

Fig. 14: CaraoKey attempts to distinguish
8 car states.

matrix LMi of dimensions s × s. Each cell (x,y) of the
likelihood matrix LMi essentially denotes the probability of
the car being in state Sx, when node Ri votes that the observed
CIR is in state Sy (where Sx, Sy ∈ S). We next explain how
a node votes and builds the likelihood matrix.

Given a CIR of state Sx ( Sx ∈ S), a receiver Ri correlates
this CIR with (other) CIRs in its corpus Ci, and computes the
mean correlation with the reference CIRs of each state. This
results in a correlation vector CVi of dimension s×1. Node
Ri then chooses the state of maximum correlation Sx

max(i)
as its vote. Formally, Sx

max(i) = argmax(CVi). This process
is repeated for m different CIRs (m = 50 in CaraoKey) of
state Sx by the node Ri, resulting in a maximum vote vector
Mx

i = [Sx,1
max(i), Sx,2

max(i),...,Sx,m
max(i)]. From this vector, node Ri

computes a row of the likelihood matrix which can be formally
represented as P(Sx—Sy), ∀ Sy ∈ S, where P(Sx—Sy) =
# of occurrences of Sy in Mx

i

m . Anecdotally, this vector can be
understood as: “the probability of being in state Sx (say
Empty) when the node votes Empty, node votes front door
open, node votes front window open etc. A node that can
detect a particular state Sx well will have a high LMi(Sx,Sx),
while a node which cannot detect a particular state well
will have LMi(Sx,Sx) similar to LMi(Empty,Sx) and LMi(Sx,
Empty). This process is repeated for each of the s states, and
for each of the n nodes, resulting in n s×s likelihood matrices.

Testing Phase: In the testing phase, each node Ri correlates
its observed CIR with the corpus (as in the training phase),
and makes a vote based on maximum correlation (Smax(i)).
From this vote, Ri obtains a likelihood vector (a column of the
likelihood matrix), LVi. Formally, LVi = LMi(Sx, Smax(i)) ∀
Sx ∈ S. This s-element vector essentially says : ‘when node
Ri votes Smax(i), how likely is the car to be in each of the s
states. CaraoKey repeats the process for each of the n nodes
and then fuses the likelihood vector from each node via a
vector sum (i.e. the probability value of being in each state
according to every node is summed). CaraoKey then passes

the top-K most likely states for this observed CIR, on to the
next step.

2) Step 2: Multipath Profile based State Inference:: In this
step, CaraoKey identifies the state of the car. It does so by
extracting features from the CIRs observed by the nodes –
referred to as the multipath profile. We next explain how this
multipath profile is computed.

As mentioned earlier, the CIR is representative of how the
environment impacts the transmitted signal. The peaks in the
CIR represent the reflections from the environment. These
peaks look different when the state of the car changes. Conse-
quently, CaraoKey performs “peak-driven” feature extraction
to build the multipath profile. These peak-based features are
extracted based on position and amplitude. More precisely, as
shown in Figure 13, each node extracts the following features
from its observed CIR – (i) ratio of the power (amplitude) of
the first p peaks - (P1

P2
, P1

P3
, ..., P1

Pp
), where Pk refers to the

kth peak ordered by position, (ii) ratio of the power of the
top p peaks - (P

′
1

P ′
2

, P ′
1

P ′
3

, ..., P ′
1

P ′
p

), where P’k refers to the kth

peak ordered by power and P’1 = Pmax, (iii) relative (tap)
distance between the first p peaks (T2 - T1, T3 - T1, ..., Tp

- T1), where Tk refers to the tap of the kth peak ordered by
location, (iv) relative (tap) distance between the top p peaks
(T’p - T’1), where T’k refers to the tap of the kth peak sorted
by power such that T’1 = Tmax, (v) power of the maximum
valued peak (Pmax), (vi) position of the maximum valued peak
(Tmax). (CaraoKey uses p = 3). Figure 2 shows an example
of a pair of features – P1

P2
and P1′

P2′
from two nodes helping

separate many of the states. By adding the remaining features
and nodes, CaraoKey starts to better distinguish the states of
interest. Furthermore, in Step 1, the correlation values obtained
when the test CIR is correlated with the corpus, are reduced to
a single value (max). In this step, the correlation values are also
used as features. More precisely, let c1i , c2i , ..., csi be the mean
correlation value obtained by node Ri on correlating the test
CIR with elements of the corpus CS1

i , CS2
i ,..., CSs

i respectively.
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Fig. 16: We evaluate CaraoKey at 7 different locations (two
indoors and five outdoors), under various scenarios.

Fig. 17: CaraoKey node and data
collection system architecture.

As the correlation values from the different nodes are not in
the same scale (i.e. correlation values are locally ordered per
node, but not globally ordered across nodes), we compute a
relative correlation vector : [c1i - c1i , c2i - c1i , ..., csi - c1i ].
Said differently, the relative correlation vector is a measure
of change relative to a reference state, namely the empty state
(i.e. c1i is mean correlation with respect to the corpus of empty
CIRs).

These features are computed by each of the n nodes, and
together referred to as multipath profile. The resulting 147-
element feature vector is passed through a Random Forest
Classifier (100 estimators) which identifies the car state from
the K shortlisted states.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

Implementation : Figure 17 shows an overview of our
implementation. To implement CaraoKey, we program 14
Radino32 Spider boards [27]. Each board consists of a De-
cawave DW1000 transceiver chip [26] that complies with
the IEEE802.15.4 UWB standard [8], and an STM32L151
microcontroller [28] to control the chip. These boards are
programmed to output a 250-tap CIR at 33Hz. Each tap
is represented as a 4-byte complex number from which the
amplitude is computed as its magnitude. We point out that
CaraoKey only uses 25 of the 250 taps. However, we read
out 250 taps to perform sensitivity analysis (Section V-G).
These “truncated” CIRs are read from each Radino board
via its serial port that is connected to a host laptop via a
Silicon Labs CP2102N USB-UART bridge [29] and a USB
3.0 hub. These CIRs are upsampled by a factor of 4 in the host
laptop. Each board is terminated by a 3.3dBi omni-directional
antenna [30]. Each node is powered via USB through an
1800mAh power bank, and placed inside a plastic enclosure.
The boards are programmed to use Channel 5 of the UWB
standard - occupying the 6.24 to 6.74 GHz frequency band.
We use a 1024-length preamble with a 64MHz pulse repetition
frequency. Finally, the CIRs that are read onto the host laptop
are processed (Section III) in Python.

Experimental Setup : To test our hypothesis, we mount
the 14 nodes as previously shown in Figure 5, on two
configurations of a Volkswagen CC. We place the instrumented
cars at 7 different locations of varying multipath – two indoors

(L1 and L2) (in a multipath rich garage) and five outdoors (L3-
L7), as shown in Figure 15 and 16. The five chosen outdoor
locations were all different and tested different factors. In L3
the car was parked in free space (i.e. no person or vehicle
besides the instrumented car), in L4 a person was walking
close (roughly 50cm) to the car, in L5 a car (SUV) was parked
on one side, in L6 (different) cars (a hatchback on the left,
a sedan on the right) were parked on both sides, and in L7
the car was parked next to a concrete wall. In each location,
we collect 3 minutes of data for each state – empty, front
door open, front window open, rear door open, rear window
open, person in front, person in back and trunk open. The
experiments for all states (except empty and trunk open) were
performed on the left-side of the car alone. This is because
of the symmetric nature of the setup (Section III-B). For the
person inside experiments, two different people sat inside the
car. During the study, other vehicles and people moved freely
in the adjacent lanes of the parking lot (or) adjoining roads.
We evaluate CaraoKey in terms of two metrics – accuracy and
power consumption. To measure power consumption, we use
the Keysight N6705B DC Power Analyzer [31]. From a power
dissipation standpoint, there are no health concerns associated
with CaraoKey as it is UWB-standards compliant. Its Effective
Isotropic Radiated Power after accounting for antenna gain and
cable loss is just 79µW. In comparison, a typical 5GHz Wi-
Fi access point transmits at 200mW which is nearly 2500x
higher. (FCC limit is 1W [32]).

V. EVALUATION

A. System Accuracy

We first evaluate CaraoKey’s ability to differentiate the
states of interest. In this evaluation, we first perform a leave-
one-out cross validation (i.e. train on 6 locations and test
on the remaining 1 location), and report the average. From
Figure 18, we observe that CaraoKey has an average state
classification accuracy of about 98% (across all states). Each
state individually also has an average classification accuracy
of nearly 95% and above. At times, the Empty state tends to
get confused with one of the window open states (or vice-
versa), but not the door open states. This is because doors
(unlike windows) are typically made of metal, and hence their
open/close actions affect the multipath profile more drastically,



Fig. 18: CaraoKey achieves 98%
accuracy by performing a leave-
one-out cross validation.

Fig. 19: CaraoKey achieves over
92% accuracy by training on just
1 location.

thus making them more distinct from the empty state. Fig-
ure 19 shows the individual state classification accuracy under
pure location agnosticism. Here the location under test uses
training data from just one location. Each cell in the matrix
is the average state classification accuracy of all 42 possible
combinations per dataset (7C1×6) of training on 1 location,
and testing on one other location. Even under such conditions,
CaraoKey achieves an average state classification accuracy of
92% (across all states). This accuracy is lower than the leave-
one-out scenario because of the absence of observation of
similar scenarios in training. CaraoKey increases the accuracy
by adding more diverse training data. However, the accuracy
can also be improved by increasing the number of transmitters
(i.e. a round-robin set of transmitters). If N is the number of
nodes in the car, then this creates N(N-1)/2 links that can be
sensed, instead of (N-1), albeit at the cost of complexity. We
leave it as a future work to increase the number of transmitters.
Finally, we point out that there is a 7% increase in accuracy
by using the 2-step state identification approach (as opposed
to just one of the steps).

B. Baseline Comparison

We compare CaraoKey’s state classification performance
with two baselines – an RSS-based baseline and a CaraoKey
variant that uses only the exterior nodes. In this comparison,
all systems employ leave-one-out cross validation.

RSS-based baseline: This baseline is representative of
keyless systems that can only use received signal strength
(RSS) information - for e.g., keyless systems built on tech-
nologies like Bluetooth whose standards currently only export
RSS [33]. We emulate such a system by computing the RSS
directly from the CIR (Section 4.7.2 of [26]). Using RSS
alone, the average accuracy drops down to nearly 49%. While
CaraoKey benefits from using features derived from the CIR
which provide information about the multipath within the car,
the RSS is a single aggregate metric with no information about
individual paths incident on a receiver. Furthermore, the RSS
also does not change significantly between states (roughly
3dBm). As seen in Figure 20, even the top-5 classification
accuracy (the fraction of blinks where the ground truth state
is in the top-5 most likely states of the classifier) of an RSS-
based system is lower than CaraoKey’s top-1 accuracy.

CaraoKey with exterior nodes : As CaraoKey only uses
internal nodes (Section III-E), we compare its results with a
CaraoKey variant that only uses the external nodes. As seen

in Figure 20, using the exterior nodes causes the average
accuracy to drop to 70%. This is because as mentioned earlier
the exterior nodes are less robust to location changes than
the interior nodes. Hence, at two different locations, a given
state Si looks “more similar” to another state Sj , than itself.
However, the external node variant still has a higher (top-
1) accuracy than the RSS-baseline as it uses the CIR which
contains more details than the aggregate RSS metric.

C. Effect of Number of Training Locations

We evaluate how CaraoKey’s accuracy changes as we vary
the number of training locations. If t is the number of training
locations, we generate all 7Ct×(7-t) scenarios of training
and testing, and compute the classification accuracy across
all states, for each scenario, per dataset. From Figure 21,
we observe that even if we train on just one location (i.e.
pure location independence), we can obtain an average state
classification accuracy of 92%. We also observe that as we
start to increase the number of diverse training locations,
the accuracy starts to increase, with over 95% accuracy by
training on any two locations. With 50 training CIRs per state
(Section III-F2), 14 states (states of interest can happen on
either side of the car) and 6 training locations, the total training
time for CaraoKey is only 127s (= 50

33×14×6). We point out
that such a training can be performed on only one model of
a car (in the factory), and not necessarily on every shipped
model of a car.

D. Effect of Number of Internal Nodes

We next study how the number of internal receiver nodes
affects the accuracy of CaraoKey. This attempts to answer the
question “given a node budget by a car manufacturer, what is
the highest achievable state classification accuracy?” For this
evaluation, we vary the number of nodes and perform a leave-
one-out cross validation. Furthermore, for a given node count
(N) we take the (a)symmetry properties of our experiments
into account. For example, as we experiment with only the
left front door open, and in the scenario where we consider
only one front node, we emulate the effect of either door being
open by taking the average accuracy of both the front nodes.
Hence, say for N = 1, the highest average state classification
accuracy (ASCA) is given by max ( ASCA(Node 7,Node 8),
ASCA(Node 9, Node 10), ASCA(Node11), ASCA(Node12),
ASCA(Node13)). From Figure 22, we notice that in general
the ASCA increases as we add more nodes. We also observe
that with just 3 internal nodes, CaraoKey can achieve nearly
94% accuracy in the best arrangement of the 3 nodes. Fig-
ure 22 also shows the node combination which gives us the
highest ASCA for a given node count. We observe that the
trunk node is the most important receiver node, if only one
receiver is permitted. This is because it is central and can
receive reflections from both sides of the car, and the trunk
itself. Similar to Section V-A, we point out that the accuracy
for a given receiver node count can potentially be improved
by increasing the number of transmitters, thus creating more
links for sensing.
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Fig. 20: CaraoKey outperforms baselines
that use RSS and the exterior nodes by 49%
and 28% respectively.
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Fig. 21: As the number of training locations
increase, the accuracy increases. It achieves
92% accuracy with just 1 training location.

Fig. 22: As the number of receivers increase,
the accuracy increases. With just 3 receivers,
CaraoKey can achieve nearly 94% accuracy.

E. Power Analysis

Based on our measurement via the Keysight N6705B DC
Power Analyzer [31], the average current consumption of a
transmitter and receiver during a transmit and receive event is
80.5mA and 94mA respectively. By duty-cycling the device
(sleep current draw is 2µA) between the blinks, the average
current consumption of the transmitter and receiver reduces
to 12.6mA and 57.8mA respectively. From Section V-D, we
observed that we can obtain 94% accuracy using just 3
receivers (4 nodes in total). This results in a current draw
of 186mA (= 12.6 + 57.8*3) at 33Hz blink rate. A typical
car battery is expected to run for about 30 days without
recharging (when car is parked for extended duration). This
results in dark current requirements for the car depending on
its make/model and car battery size (typically 50mA with
12V 50Ah battery [34]). Dark currents include all leakage
currents and average current consumption of other car sub-
systems which are duty cycled when car is ’off’, examples
include keyless and security sub-systems. To ensure practical-
ity of the solution, it’s important that average current load of
CaraoKey when car is off should not exceed allotted budget
(5-10mA). CaraoKey can make prediction based on each blink
independently. It can reduce current consumption by lowering
the blink rate. This is called down-sampling in slow time [35].
The power and current consumption with lower blink rates are
shown in Figure 23. For a 3 receivers (4 nodes) setup, up to
2Hz blink rate is possible.

F. Effect of Tap Resolution

CaraoKey uses the DW1000 chipset which has a 1ns tap
resolution. We study CaraoKey’s working as we lower this
tap resolution. This is called fast time down-sampling [35].
This can potentially further reduce power consumption as
it places a lower stress on the ADC. We simulate a fast-
time down sampling rate of N, by taking every Nth CIR
tap. From Figure 24, we observe nearly 90% accuracy after
downsampling by a factor of 2 (= increasing tap resolution
to 2ns). However after that, we notice that the accuracy
decreases rapidly as we downsample in fast time. This is
because multiple peaks start to fuse as one (or are missed),
and the multipath profile that is leveraged to distinguish states
becomes no longer distinguishable.

G. Effect of CIR Window Length

CaraoKey looks at a window of 100 taps, (roughly 6m
two-way distance after upsampling) to compute the multipath
profile. We next study the effect of tap duration, as a smaller
window places lesser stress on execution. We observe that
as we start to shrink this tap window, the accuracy starts to
decrease. This is because with a smaller window there are
lesser peaks to build the multipath profile and the profile
for the different states start to look similar to one another.
Similarly as we start to increase the window length the
accuracy begins to decrease. This is because the “noisy” part
in the tail of the CIR begins to dominate, and the CIRs (of
different states) start to correalte with one another.

VI. DISCUSSION

Effect of Configuration Changes: The multipath profile
can be affected by configuration changes - i.e. changes in
the positions of the seats, mirrors, etc. However, this is
typically not an issue, as most modern cars have a notion
of “memory” [36]. Consequently, whenever the car is locked,
the car can move its seats and mirrors back to its preset
configuration.

Effect of Objects: We evaluate CaraoKey’s state identifi-
cation in the presence of objects inside the car. With small
commonly used objects like backpacks, the accuracy is not
impacted. With a large box placed inside the car, CaraoKey
mis-classified the empty car to have a person inside 40% of
the time. This is addressed by fusing data from multiple CIRs
and measuring the variance of a given tap (across time).

Use of Dedicated Sensors: Depending on the make and
model, some car states can be determined via the use of
dedicated sensors too. However, CaraoKey still needs to
”understand” these states because the keyless infrastructure is
independent from other sensor systems. This ”self-compiled”
knowledge of car states can be used as the building block for
other sensing applications based on keyless infrastructure.

Effect of multi-state and sub-states: In the current version,
we can only detect a single state. This suffices for many
practical scenarios involving a parked car, where unexpected
states will happen in succession and not altogether. However,
a car can potentially be in more than one state or can have
partially open doors, windows too. This can be handled in two
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Fig. 23: Power performance of CaraoKey with
blink rate up to 2Hz.
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Fig. 24: As a CIR is downsampled in fast
time, the accuracy starts to decrease.
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Fig. 25: CaraoKey performance with differ-
ent CIR window lengths.

ways - (i) training for combination of states or adding sub-
states, or (ii) using the probability values of the classification
process to identify the multi-state or sub-states possibility.

VII. CONCLUSION

With car manufacturers developing UWB-based solutions
for keyless entry, this paper is the first to explore the possibility
of using this UWB keyless infrastructure for secondary use-
cases. More precisely, in this paper, we present CaraoKey,
a sensing system that estimates the car state via the UWB
keyless infrastructure. It does so by leveraging the multipath
information contained in the CIR computed by an UWB
receiver. We implement a 14-node setup and evaluate it in
7 different locations and scenarios. Our results indicate that
CaraoKey can detect the car state with 98% accuracy using
8 nodes, and 94% accuracy using just 4 nodes. CaraoKey
is an example of using the UWB keyless infrastructure as a
sensing modality. This infrastructure can also be used to build
several other applications like monitoring the vital signs of
the occupants, performing occupancy counting, in-car activity
recognition, etc. Such features will become increasingly useful
in future driverless cars, shuttles and taxis where passengers′

in-vehicle security and well-being will become increasingly
important.
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