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Ultra-Wideband (UWB) is a popular technology to provide high accuracy localization, asset tracking and access control
applications. Due to the accurate ranging feature and robustness to relay attacks, car manufacturers are upgrading the keyless
entry infrastructure to UWB. As car occupancy monitoring is an essential step to support regulatory requirements and
provide customized user experience, we build CarOSense to explore the possibility of reusing UWB keyless infrastructure as
an orthogonal sensing modality to detect per-seat car occupancy. CarOSense uses a novel deep learning model, MaskMIMO,
to learn spatial/time features by 2D convolutions and per-seat attentions by a multi-task mask. We collect UWB data from
10 car locations with up to 16 occupancy states in each location. We implement CarOSense as a cross-platform demo and
evaluate it in 15 different scenarios, including leave-one-out test of unknown car locations and stress test of unseen scenarios.
Results show that the average accuracy is 94.6% for leave-one-out test and 87.0% for stress test. CarOSense is robust in a large
set of untrained scenarios with the model trained on a small set of training data. We also benchmark the computation cost
and demonstrate that CarOSense is lightweight and can run smoothly in real-time on embedded devices.
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1 INTRODUCTION

In recent years, Ultra-Wideband (UWB) has gained traction as an important wireless technology to support
high accuracy localization and tracking applications [13]. It is now available in smartphones [5] and is also used
extensively for asset tracking applications in industrial plants [19]. Compared to other solutions based on Wi-Fi
or Bluetooth, UWB has much higher bandwidth resulting in much better resolution and spatial awareness. Apart
from being more accurate, UWB also provides much better immunity against relay attacks as UWB has better
timing resolution (inverse of high bandwidth) and the IEEE 802.15.4-2015 UWB standard explicitly incorporates
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timing information [30]. Ranging-based localization is mostly used for access control applications such as for cars,
garage doors, asset tracking, etc., which requires operation from distance. Consequently, for the past few years
IEEE 802.15.4z Enhanced Impulse Radio Task Group is developing more secure and accurate ranging methods for
UWB-based access control [31]. One major application that is looking for disruption is automotive keyless access
where current solutions suffer from relay attacks [18, 22, 29, 60]. UWB can be used as a keyless infrastructure in
cars for passive entry [6, 33, 43], vehicle authorization [36], and access control [42]. In this paper, we explore
using UWB keyless infrastructure for occupancy/presence sensing in vehicles with per-seat granularity.

Car occupancy has always been an active area of interest for automotive makers from both supporting
regulatory requirements and providing interesting user experience. At the base level, every car should detect
occupancy in front seats and accordingly provide Seat Belt Reminder (SBR). This basic regulation, which was
first enacted law in 1970, is changing as the focus is shifting to safety of all passengers and not only front seat
ones. As per studies, unrestrained rear seat occupants are nearly eight times as likely to sustain a serious injury
in a crash as restrained rear seat occupants and twice likely to die if they are unbelted [1, 8]. In 2017 alone, 1341
fatally injured rear seat occupants were aged 12 years and older with 60% of them not wearing seat belts [41]. In
2018, overall 803 fatalities were reported in vehicle crashes in the USA for unbelted rear seat occupants who were
8 years old or higher [8]. In general, seat belt usage has been reported 10-15% lowers compared to front seats and
the number can be worse for different regions, for example, states that do not enforce rear seat belt use in the
USA [8]. To address this problem, recently New Car Assessment Program (NCAP) all over the world are providing
a given vehicle additional safety ratings for supporting SBR in rear seats [51, 53] as incentives. These incentives
are also considered as regulatory requirements in making and hence automakers are developing robust and cost
efficient rear seat occupancy detection and seat belt reminder solutions. Apart from basic seat belt reminder
function, such a system can also provide additional safety features such as airbag control and enhanced user
experience with better climate and audio controls. Car occupancy information is also an important component
for effective shared autonomy, such as human sensing, shared perception-control, and deep personalization, for
Human-Centered Autonomous Vehicle (HCAV) Systems [23].

There are various sensing modalities that can be used for car occupancy sensing, with each having its
own advantages and disadvantages: camera-based solutions have privacy issues [61], weight sensors are not
accurate enough to identify between animate/inanimate objects, ultrasound techniques are not pet friendly when
frequencies used are less than 80kHz [14, 70], and RF Radar requires high bandwidth and multiple antennas
which translate to high cost and power consumption [10, 46]. Moreover, all of them incur additional dedicated
hardware and installation cost of wire/cable harnesses, as they are not available as standard offerings in a car. Of
all these technologies, weight sensor (essentially a pressure sensor) is a de facto solution for occupancy sensing
and classification [28]. Even though weight sensor based solutions are available for years but they are not widely
adopted for rear seats primarily due to additional cost, immature rear air bag deployment techniques (not as
effective as front airbags) and seat reconfigurability constraints (e.g. wiring wear tear which may happen when
seat is removed by the user). Therefore providing a wire-free solution for occupancy sensing can potentially
alleviate limitations of current solutions. So, we ask a basic question: can we use potentially existing system in
the car to address per-seat occupancy sensing? As mentioned earlier, the keyless system of upcoming vehicles
are going to have UWB technology. UWB provides rich channel information in the form of Channel Impulse
Response (CIR) at the receiving nodes and is harmless to humans and animals due to extremely low power [58].
Wireless channels are generally sensitive to human movements within the channel and it is this hypothesis that
we envision can be used for detecting per-seat occupancy within the vehicle. A typical keyless solution may
have up to 8 nodes depending on make/model and the preference of Original Equipment Manufacturers (OEMs),
where up to 4 nodes may be external. So to test our hypothesis, we assume up to 8 nodes in the car with different
locations as a superset of possible node locations [7, 24, 49].

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 3, Article 91. Publication date: September 2020.



CarOSense: Car Occupancy Sensing with the Ultra-Wideband Keyless Infrastructure « 91:3

Although UWB has high spatial resolution, there are still challenges for UWB-based occupancy sensing to
be accurate, robust, and practical in real-world scenarios with per-seat granularity. Recently, machine learning
algorithms are widely used for wireless sensing applications [48]. Traditional machine learning algorithms, such
as k Nearest Neighbor (kNN), Support Vector Machine (SVM), and Gradient Boosting Decision Trees (GBDT),
need a lot of human efforts to design and select the right features. More importantly, these algorithms only work
when they are trained and tested with UWB data from the same car location and the same car state. Deep learning
models, such as Convolutional Neural Networks (CNNs), do not need extensive feature engineering and have
higher accuracy than kNN, SVM, and GBDT for unknown car locations. But standard CNN models still do not
work for new scenarios that are not seen during training, for example, the driver seat is moved for test data. The
reason is that standard CNNs are usually designed for computer vision tasks, while UWB data are different from
digital images [40, 58]. Therefore, it is necessary to develop new deep learning models that are specially designed
for UWB data. We also would like to point out that automotive indoor environment is small with rich multi-path
and very variable with moving seat positions, animate/inanimate objects with different reflection properties at
different locations (on seat, car floor, or in trunk), etc. It is impractical to train the model with all possible cases.
However, a developed model is expected to work reasonably good for all possible scenarios.

We propose a new deep learning design, CarOSense, for per-seat car occupancy sensing with the UWB keyless
infrastructure. CarOSense has 8 UWB nodes in the car with one node broadcasting UWB packets and other nodes
collecting CIR measurements. Raw CIRs are processed and fed to a multi-input multi-output CNN with multi-task
mask, or MaskMIMO, for per-seat occupancy classification. MaskMIMO is accurate and robust for unknown car
locations and unseen scenarios by learning spatial/time features from 2D convolutions and per-seat occupancy
attentions from the multi-task mask. It requires low effort for signal processing, feature engineering, and model
training. We implement CarOSense as a demo that can run in real-time on different platforms including personal
computers and embedded platforms such as Google Coral [26] and Raspberry Pi [21].

We collect UWB CIR data from 10 different car locations with up to 16 occupancy states, and evaluate
CarOSense under 15 different scenarios from perspectives of accuracy, robustness, and computation cost. Accuracy
and robustness are evaluated by leave-one-out test wherein the car location of test data is not seen during training
and stress test of different unseen scenarios such as car seats moved and kids in back seats. The average accuracy
of CarOSense is 94.6% using 8 UWB nodes (77.3% using 4 nodes) for leave-one-out test and 87.0% using 8 nodes
(69.4% using 4 nodes) for stress test. Computation cost is evaluated by running the real-time demo on different
platforms. Evaluation results demonstrate that CarOSense has low computation cost and can run smoothly in real-
time on embedded platforms. The time consumption of CIR processing and model inference is 128 milliseconds
for Google Coral and 86 milliseconds for Raspberry Pi. In summary, we make the following contributions:

First-of-its-kind: CarOSense is the first system that leverages UWB keyless infrastructure in automobiles to
demonstrate occupancy/presence detection application with per-seat granularity.

Accurate: CarOSense has high accuracy for different scenarios: 94.6% with 8 UWB nodes and 77.3% with 4 UWB
nodes for leave-one-out test of unknown car locations.

Robust: CarOSense is robust in a large set of untrained scenarios with the model trained on a small set of training
data. For stress test of unknown scenarios, the accuracy of CarOSense is 87.0% with 8 UWB nodes and 69.4%
with 4 UWB nodes.

Cost Efficient: CarOSense leverages existing keyless infrastructure and in the best case does not require any
additional UWB nodes in the car. Moreover, it does not have location specific requirements and hence can
utilize the existing installed UWB sensors. CarOSense requires low training effort and has low computation
cost thus making it practical to run in real-time on embedded devices with constrained resources.

The rest of the paper is organized as follows. Section 2 gives background of automotive keyless entry infras-
tructure and UWB basics. Section 3 first presents feasibility study of car occupancy sensing with UWB and
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standard machine learning algorithms and then presents CarOSense including CIR processing and classification
algorithms. Section 4 shows experiment setup, performance scores of different testing scenarios, and real-time
computation cost on different platforms. Section 5 presents related works, and Section 6 concludes the paper.

2 BACKGROUND

To better understand the motivation and background of CarOSense, we introduce the evolution of automotive
keyless systems and UWB basics to enable the sensing use cases in this section.

2.1 Automotive Keyless Entry Infrastructure

The key system of automobiles has evolved from using traditional physical keys to remote keyless control to
unlock a car. Using remote keyless control, users can remotely lock/unlock their vehicles by pressing a button on
the key fob. In the last decade, major car OEMs have adopted a passive keyless system [35], which allows users
to lock/unlock/start vehicles without touching any key fobs. This passive keyless entry system provides users
a convenient way to enter and start a car, where a user can put the key fob in the pocket/backpack and opens
the car in a seamless and touch-less manner. Typically, such keyless entry system uses a combination of Low
Frequency (LF) and Ultra-High Frequency (UHF) channels to measure the proximity of the key fob and check if
the key fob is inside or within a certain range (e.g., 2m) of the car. However, such keyless entry system is subject
to relay attacks [18, 22, 29, 60]. The attacker puts one or more relay devices between the car and the legitimate
key fob. These relay devices create a relay channel to make the car falsely believe the user is in the unlocking
zone or inside the car, and allow the attacker to unlock/start the car.

UWRB is an alternative and more advanced technology for keyless entry systems. As it can eliminate relay
attacks [66, 67], car OEMs have started upgrading existing keyless systems to UWB-based infrastructure [15,
33, 43, 67]. UWB radios carry explicit timing information which is defined in the IEEE 802.15.4-2015 UWB
standard [30]. Such timing information is recorded by timestamping the packet received by the UWB radio. If the
signal is coming from a relay device, it will take a longer time to be received by the car, as the signal actually
travels through a longer distance from legitimate key to the car. By setting up a time delay restriction, UWB
based system can perfectly prevent such relay attacks. Meanwhile, UWB radio is coming to smartphones [5].
With UWB-based keyless systems, users no longer need to carry additional key fobs. Instead, they can use their
smartphones to lock/unlock/start their vehicles. This will fundamentally change the user experience of car access
as users will also be able to share keys digitally [6, 15]. In our work, we leverage such UWB-based keyless
infrastructure without adding additional hardware cost to enable per-seat occupancy sensing function in vehicles.

2.2 UWSB Basics

UWSB is a radio technology with a large bandwidth and low power for short-range wireless transmissions.
According to the Federal Communications Commission (FCC) of the USA, UWB refers to radio technologies
that have a bandwidth larger than 500MHz or 20% of the arithmetic center frequency. In the USA, the frequency
range of UWB is from 3.1 to 10.6GHz, and the Power Spectral Density (PSD) limit for UWB transmitters is
-41.3dBm/MHz. Table 1 shows a comparison of UWB with other wireless technologies including Radio-Frequency
IDentification (RFID), ZigBee, Bluetooth, and Wi-Fi. Because of low power, high data rate, low interference, and
high security features, UWB is also suitable for wireless intra-vehicle communications [9, 59], which can help
reduce vehicle weight/cost and simplify electrical wiring/maintenance [64]. Our work is built on top of existing
UWSB infrastructure on cars to use it as a new sensing modality. Especially, CarOSense focuses on per-seat car
occupancy sensing without introducing additional dedicated sensors.

One major advantage of UWB is the large bandwidth that provides much better time/spatial resolution than
other wireless technologies. The time resolution of wireless sensing is 7 = 1/B where B is the channel bandwidth.
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Table 1. Comparison of Wireless Technologies

Frequency Bandwidth Se?;inmifse;g;t;)on ?é?:ﬁﬁ;if;)t Power  Range 1122:: Interference
RFID 14MHz; 900MHz 200-500kHz 2-5ps/0.6-1.5km RSS (coarse) Low 10cm; 10m  Low Low
ZigBee  868/915MHz; 2.4GHz 2MHz 0.545/150m RSS (coarse) Low  10m; 20m Low High
Bluetooth 2.4GHz 1MHz 1415/300m RSS (coarse)  Low 20m Medium High
Wi-Fi 2.4GHz; 5GHz 20-160MHz 6-50ns/1.8-15m CSI(fine)  High  200m High High
UWB 3.1-10.6GHz 500-1354.9MHz  0.7-2ns/22-60cm CIR (fine) Low 10m High Low

UWB has bandwidth larger than 500MHz, so its time resolution is better than 2 nanoseconds. This corresponds
to spatial resolution of 60 centimeters for electromagnetic waves with speed of 3 x 10% meters/second. A typical
Wi-Fi channel with 20MHz bandwidth has spatial resolution of 15 meters [72], so it is hard to provide fine-grained
sensing capabilities. A comparison of the time/spatial resolution of UWB and other wireless technologies is
shown in Table 1. UWB provides more fine-grained sensing capabilities than other wireless sensing technologies,
especially for in-vehicle environments with strong multi-path efforts. Moreover, UWB is more energy efficient and
has lower interference than other wireless technologies, since UWB has lower power [2, 34, 58, 65]. Because of
high time/spatial resolution, low power, and low interference, UWB is suitable for in-vehicle occupancy sensing.

The transmit signal of UWB, which is a sequence of pre-defined symbols in the IEEE 802.15.4 format [30],
travels through multiple paths and arrives at the receiver with different amplitude attenuation and time of flight.
The receive signal is compared with the known sequence of transmit symbols to compute the CIR:

h =" @bt -n). (1)

where a; and 7; are the amplitude and time of flight, respectively, of the i-th path, and §(-) is the Dirac delta function.
The UWB CIR represents the multi-path profile of how the transmit signal travels through the environment
around the transmitter and receiver.

3 DESIGN

In this section, we first present a feasibility study of UWB-based occupancy sensing and demonstrate that standard
machine learning algorithms do not work for unseen scenarios. Then we present the design goals of per-seat car
occupancy sensing including accuracy, robustness, training efforts, real-time computation cost, versatility, and
scalability. Finally, we present the proposed design including CIR processing and classification algorithms.

3.1 Feasibility Study

A time series of CIRs represents multi-path profile variations caused by any changes of the environment. This is
the reason of why CIRs can be used for sensing purposes. Fig. 1a shows a heatmap of the CIR amplitude measured
from multiple CIR blinks. The CIR heatmap can be represented by the average and standard deviation as shown
in Fig. 1b. Different features, such as peaks/valleys, distances between peaks/valleys, number of peaks/valleys,
etc., can be calculated and fed to machine learning algorithms for different sensing purposes.

Since CIRs are impacted by multi-path signal reflections from objects and humans in the car, CIR shapes and
variations can be used for car occupancy sensing. Fig. 2 shows CIR shapes and variations of multiple UWB
receivers for different occupancy scenarios. The transmitter is placed on the center panel, and 7 receivers are
placed at different places in the car. The CIR shapes and variations show different multi-path profiles for different
occupancy scenarios. For example, Receiver4 at central ceiling and Receiver6 in trunk show different CIR shapes
between empty and driver seat occupied cases. Meanwhile, Receiver0 at front-left ceiling and Receiverl at
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Fig. 1. Heatmap, average and standard deviation of the amplitude of a time series of CIRs.
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Fig. 2. CIR examples of different occupancy scenarios.

rear-view mirror have high CIR variations due to minor human movements when there is a person in the driver
seat, while all UWB nodes have low CIR variations when the car is empty. In this way, CIR shapes and variations
can be fed to machine learning algorithms for car occupancy sensing.

Support Vector Machine (SVM) and k Nearest Neighbor (kNN) are two of the most widely used machine
learning algorithms for wireless sensing applications [48]. kNN is an instance-based machine learning algorithm.
It first computes the distance, e.g., Euclidean and Hamming distance, between the test sample and each of the
training samples and then classifies the testing sample based on the majority vote from the k nearest neighbors.
SVM tries to maximize the functional margin, i.e., the distance to the nearest training data points of each class,
by separating data points with a set of hyper-planes in a high-dimensional space. Another widely used approach
is Gradient Boosting Decision Trees (GBDT) which ensembles weak machine learning models, i.e., decision trees,
to iteratively improve the weak points of the previous model. It is "one of the best, if not the best, algorithm for
dealing with nonperceptual data”, which makes it one the most commonly used algorithms, along with deep
learning, for top winners of Kaggle competitions [11].

However, traditional machine learning algorithms do not work for UWB-based car occupancy sensing in
unseen scenarios. Fig. 3 shows the accuracy of kNN, SVM, and GBDT for car occupancy sensing using UWB
the setup with 1 transmitter and 7 receivers as shown in Fig. 2. When the car location of test samples is known
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Fig. 3. Accuracy of different algorithms for car occupancy sensing in different scenarios.

during training, the accuracy of kNN, SVM, and GBDT is higher than 97%. For unknown car locations, i.e., the
pre-trained model is tested by CIR data from a new location that is not seen during training, the accuracy drops
to 67%, 74%, and 81%, respectively, for kNN, SVM, and GBDT. The accuracy further drops below 36% when the
driver seat or both front seats are moved for test samples. Another issue for traditional machine learning models
is they require a lot of human efforts for signal processing and feature engineering to design and select the right
features. Therefore, more accurate and efficient algorithms are needed for UWB-based car occupancy sensing.

Recently, Convolutional Neural Networks (CNNs) are widely used for wireless sensing applications [48]. CNN
requires very little or none human efforts for signal processing and feature engineering. More importantly,
CNN has higher accuracy than kNN, SVM, and GBDT for unseen scenarios. We modify an image-based CNN
model from C4S-C [20], which uses thermal images for in-vehicle occupancy detection, for UWB CIR data and
compare its accuracy with kNN, SVM, and GBDT in Fig. 3. The accuracy of CNN is 88%, which is 21%, 14%, and 7%
higher than that of kNN, SVN, and GBDT, respectively, when the car location of test samples is not seen during
training. However, reusing CNNs from computer vision tasks gives low accuracy for UWB-based car occupancy
sensing for unseen scenarios, since standard CNNs are usually designed and trained for computer vision tasks
focusing on digital images which are very different from CIR data in many aspects such as spatial resolution and
wavelength [40, 58]. As shown in Fig. 3, the accuracy of CNN is around 55% when the driver seat or both front
seats are moved. Therefore, new models are needed for per-seat car occupancy sensing to be accurate and robust
in different unseen scenarios, e.g., unknown car locations, multiple persons, car state changes, etc.

3.2 Design Goals
We have the following goals for per-seat car occupancy sensing with the UWB keyless infrastructure:

Accurate and Robust: The system is accurate and robust in different unseen scenarios such as unknown car
locations, multiple persons, car seats moved, car engine is on, car is driving, car windows are open, etc.

Low Training Effort: The system requires low human effort for data collection, signal processing, feature
engineering, and model training for easier adoption and to keep system cost low. It can be trained on a
small set of training data and still be robust in a large set of untrained scenarios.

Lightweight Implementation: The system has low computation cost and can run in real-time on embedded
devices with constrained resources.

Versatile and Scalable: The system can be trained with pre-trained models and new data without restarting
the training from scratch and is scalable in terms of number of UWB nodes, new tasks, and new data.

We propose a new deep learning design, CarOSense, for accurate, robust, and practical per-seat car occupancy

sensing with UWB, as shown in Fig. 4. There are 8 UWB nodes attached at different places in the car, as shown

in Fig. 4a. Each node has a Decawave DW1000 UWB transceiver, an STM micro-controller, an antenna, and a

removable battery, as shown in Fig. 4b. Each node is connected to a USB hub through a USB-UART bridge and

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 3, Article 91. Publication date: September 2020.



91:8 « Maand Zeng, et al.

20000 -TONt-left-ceilin rearview-mirror front-right-ceilins

TX
e (for CIR Plotting) Test Time 184751882153
Update nenl () 2
RelTimeCR € Ye  C No

CIR Amplitude

center-panel

UWB Settings

back-center-ceilint

Number o Binks 10
back-left-ceiling trunk back-right-ceiling Blinkintens (ms) 30

) Model Settings
10000 L © MiskMIMO  C MMO € SIMO
' Model Directory /home/sav ode [

20000

w1000 m __—Antenna

CIR Amplitude

Battery

! Plastic” /=
ienclosure USB-UART bridge!
________________ - Skt

,USBhub |
[ L
[ [ .-~ ]
Node 1 Node i Node 8 ‘

0

0 50 100 0 50 100 50 100
CIR Path Index

UeGPU @ Yes C

(b) Node diagram (c) Screenshot of real-time demo

Fig. 4. Node deployment, node diagram, and screenshot of real-time demo. CarOSense works on different platforms including
computers with Windows and Linux, Google Coral development board with Mendel Linux and Raspberry Pi with Raspbian.

then connected to a laptop by a USB cable. Fig. 4c shows a screenshot of the real-time demo, debug console,
and video capturing of the target car. The demo shows real-time CIR plots and occupancy predictions with
classification scores of each car seat on the left, and system settings on the right. The proposed classification
algorithm is a multi-input multi-output CNN with multi-task masking. It is accurate and robust in different
unknown scenarios and has low computation cost in real-time running. CarOSense works on different platforms
including personal computers and embedded devices such as Google Coral development board and Raspberry Pi.

3.3 The Proposed Design

CarOSense has two components: CIR processing for converting raw UWB signals to normalized CIR tensors, and
classification algorithm for predicting per-seat occupancy from normalized CIR tensors.

3.3.1 CIR Processing. For UWB, the transmitter and receiver usually are not time synchronized, so CIRs measured
at different times may be randomly shifted with respect to each other. Fig. 5a shows two misaligned CIRs separated
with a time interval of 2 seconds. CIR alignment is needed to make a time series of CIRs represent the multi-path
profile in the right manner. We use the firth path index, which is usually reported by UWB chips such as Decawave
DW1000 [45], for CIR alignment. The first path index is determined by a leading edge detection algorithm that
compares the receive power of each path with a threshold calculated from the noise estimation [45]. The CIRs
are aligned by the first path index after removing the time shift, as shown in Fig. 5b.

There are 8 UWB nodes attached at different places in the car with 1 node as the transmitter and 7 nodes as
receivers. The transmitter is changed every 30 milliseconds in round robin order, i.e., the current transmitter is
changed to receiver and the next node is changed to transmitter. Each node collects CIRs and sends decoded
CIR measurements to the server through the USB hub. The server conducts CIR alignment using the first path
index and transforms aligned CIRs to a time series of truncated CIRs of 101 paths for each node. After every 10
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Fig. 5. Amplitude of two CIRs before and after alignment.

round robin circles, which is in corresponding to roughly 2.4 seconds, the CIR amplitude of all the nodes are
concatenated into 4D CIR tensors as the input. The size of 4D CIR tensors is (8, 7, 10, 101) representing 8 UWB
nodes, 7 receivers for each round, 10 CIR blinks, and 101 CIR paths. 4D CIR tensors are normalized by

i.train| _ .:.train jpoalid| _ jptrain . test| _ i .train
train _ |czrl. | Cllean  _valid _ |Cl j | T'mean  _test _ |Clrk | Cllmean
i[1<i<n;rqin . train > Yill<j<ngatia . train > Tk|1<k<ngess . train ’
cir.rg cir, 19 cirlrg
where cir7éih and cir!79'" are the average and standard deviation of the CIR amplitude of training samples,

|ciri”“i"|, |cir;’““d|, and |cir£“t| are the amplitude of 4D CIR tensors, and n;rqin, Nyarig and ngesy are the number

of CIR tensors for training, validation, and testing. cir/%" and cirsttrsi" are calculated by only training samples,
so no information of validation/testing samples is leaked to the training process. The normalized CIR tensors
represent the multi-path profiles inside the car in temporal and spatial domains. For example, when a person is
sitting in the driver seat, it introduces multi-path signal reflections for nearby UWB receivers. The multi-path
profiles also change over time due to human activities such as gestures and breathing. These information can be

used by machine learning models to learn temporal and spatial features for car occupancy sensing.

3.3.2  Classification Algorithm. Wireless signals and digital images have different properties, such as spatial
resolution and field of view [40, 58], so we need new CNN models that are specifically designed for UWB data.
To this purpose, we propose MaskMIMO, a multi-input multi-output CNN with a multi-task mask, for robust,
efficient, scalable, and versatile car occupancy sensing with UWB. The classification algorithm should be designed
based on the input data and output target. The output are occupancy predictions of each car seat. A possible model
architecture is using a single label for all the combinations of different car occupancy scenarios. For example,
"0000" represents an empty car and "1000" means a person in the driver seat and no person in other three seats. In
this case, the number of output classes is 16 for all the combinations of "0" or "1" for 4 car seats. This increases the
complexity of the model. Also, the large number of output classes could cause a bottleneck in the computation
and optimization, which makes it hard to train the model. This issue can be addressed by multi-task learning
which learns multiple classification tasks jointly. Multi-task learning reduces the complexity and improves the
generalization, scalability, and flexibility of the classification algorithm. First, the output is divided into simpler
tasks, i.e., binary classification of empty or occupied for 4 car seats. This reduces the complexity and computation
cost of both the model architecture and the optimization algorithm, so the model is easier to train. Second, features
learned from each task can improve other tasks, since different tasks are related. By learning multiple related
tasks in parallel with a shared representation, multi-task learning is able to improve the overall performance of
all tasks. Third, multi-task learning is scalable, and it is easy to add new tasks when new data are available. For
example, the model can add "dog" for per-seat occupancy classification and train on the pre-trained model with
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Fig. 7. MIMO model

additional data. Finally, it is flexible to add weights to different tasks for multi-task learning. For example, the
model can add a higher weight for back seats if back seats have a higher priority.

The input of the classification algorithm are 4D tensors, which also impacts the design choice of the classification
algorithm. 4D tensors can use 4D convolutions for extracting feature maps. But 4D convolutions have high time
and space complexity [78] and are not natively supported by deep learning frameworks such as TensorFlow
and PyTorch. We can replace 4D convolutions with 3D or 2D convolutions using decomposed models, such as
single-input multi-output (SIMO) and multi-input multi-output (MIMO) as shown in Fig. 6 and 7. For the SIMO
model in Fig. 6, the 3D CIR tensors of all the nodes are concatenated into a single 3D tensor. 2D convolutions
are performed along the time and space domain. The pre-processed 3D CIR tensor of each node is fed to two
convolutional layers each followed by batch normalization, Rectified Linear Unit (ReLU), max pooling, and
dropout layers. For the MIMO model in Fig. 7, each node uses its own 2D convolutions, and the convolution
output of all nodes are concatenated into a single layer for multi-task classification. For MIMO, the neural
architecture of each node is the same but the neural weights of different nodes are different. These layers try to
learn features in space and time domains for each node independently.

SIMO and MIMO do not capture the spatial features that are correlated for different nodes and different car
seats. To address this issue, we add a multi-task mask to the MIMO model to learn multi-task attentions from
multiple nodes. The architecture of the MaskMIMO model is shown in Fig. 8. Different UWB nodes have different
weights for the performance of different car seats, since they are placed at different places inside the car. The
multi-task mask learns per-seat attentions and spatial features to automatically calculate the weights of different
nodes and car seats. The output of each node is concatenated as a 3D tensor and then fed to a flatten layer and 4
dense layers to calculate the output of each car seat. The final per-seat occupancy predictions are calculated by
the multiplication of the multi-task weights and the multi-task model output.

The multi-task cost function is calculated by the weighted average of the expected loss of all tasks

Nt Nt Ns .
JO)= Y WiB (i)~ aara [L (63 0). 9] = Ni Diwe > L(Fx;0), ), @
k=1 S k=1 i=1
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Fig. 8. MaskMIMO model

where 0 represents the model architecture and learning parameters, Ny is the number of tasks, N; is the number
of training samples, wy is the loss weight of each task, py,:, is the empirical distribution of the training data,
L(-) is the loss function, f(x; @) is the model output with input x, and yy is the ground truth label of the k-th
task [25]. L(f(x; 8), yx) is the cross-entropy between the model output f(x;0) and the ground truth label y; with
softmax loss. For MaskMIMO, L(f(x; 0), yx) is calculated by multiplying the output of a MIMO module with the
multi-task weights learned from the sigmoid output of the multi-task mask. Finally, the loss function is multiplied
with the loss weights to give different priorities and contributions for the loss rates of different car seats. In our
experiments, the loss weight of each task is wy = 1 for N; = 4 tasks of the occupancy state of 4 car seats.

In summary, we propose a new deep learning design, CarOSense, for per-seat car occupancy sensing with UWB.
First, MaskMIMO learns both independent and shared features from multi-path profiles of multiple UWB nodes.
It also has a multi-task mask to learn spatial features and multi-task attentions from UWB nodes at different
locations. MaskMIMO is robust for different unseen scenarios. Second, because CarOSense is robust for different
scenarios, it can be trained by only 4 car locations and provide robust and high accuracy for different unseen
scenarios. Moreover, unlike traditional machine learning approaches such as kNN and SVM that usually need
feature engineering/selection, CarOSense can learn features automatically and needs little or none human efforts
for signal processing. Third, CarOSense uses a multi-output CNN model so that it can be re-trained by new data
or new tasks without restarting the training from scratch. Finally, the proposed model has low computation cost
and can run in real-time on embedded devices with constrained resources.

4 EVALUATION

4.1 Experiment Setup

Fig. 4 shows the experiment setup of node deployment and diagram. There are 8 UWB nodes placed at different
places inside the car, i.e., front-left ceiling, rear-view mirror, front-right ceiling, center panel, back-center ceiling,
back-left ceiling, back-right ceiling, and trunk, as shown in Fig. 4a. Each node has a DW1000 UWB chip for
sending and receiving UWB packets and collecting CIRs, as shown in Fig. 4b. All the nodes are connected to a
USB hub for sending CIR measurements to the laptop. At startup, the first node is the transmitter and the other 7
nodes are receivers. Each receiver computes the CIR from the received packet preamble and sends the decoded
CIR measurements to the laptop through the USB-UART bridge and USB hub. The transmitter is changed to
receiver and the next node is changed to transmitter every 30 milliseconds in round robin order.

The real-time demo is implemented in Python 3 and supports different platforms. A screenshot of the real-
time demo is shown in Fig. 4c. The demo supports different settings, such as showing real-time CIR plotting,
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Fig. 9. Car locations. Indoor1, indoor2, indoor3, outdoor1, and outdoor2 are used for leave-one-out tests. Indoor4, outdoor3,
and outdoor4 are used for stress tests of special scenarios. Indoor5 and outdoor5 are used for unseen person evaluation.

enabling/disabling round robin transmission, update interval, and pre-trained model. After all the settings are
ready, the demo starts the UWB communication module by sending commands to UWB nodes through the USB
hub. It first sends request to each node to collect system information of each node. Based on the settings, the
demo sends node configuration to each UWB node and starts CIR data collection. Each receiver node estimates
CIRs from UWB packets, and sends the decoded CIRs to the server through the USB hub. The server first conducts
CIR alignment and then transforms CIRs of all nodes into 4D tensors. Each 4D CIR tensor is normalized and then
fed to the pre-trained model to calculate occupancy predictions and classification scores of each car seat which
are updated on the Graphical User Interface (GUI). If real-time CIR plotting is enabled, CIR amplitude of each
selected receiver is calculated and updated on the GUL Classification models are trained by a laptop with Nvidia
GPU GeForce RTX 2080 Max-Q [52]. CarOSense is implemented and evaluated on a laptop and two embedded
devices including Google Coral development board [26] and Raspberry Pi [21].

Data collection is conducted in 5 indoor and 5 outdoor locations, as shown in Fig. 9. A summary of different
evaluation scenarios is shown in Table 2. In total, there are 9269 instances of 4D CIR tensors each with size of (8, 7,
10, 101). There could be no person or up to four persons simultaneously sitting in the car. There are 9 participants
with different bio-metrics (height: [165cm, 182cm]; weight: [1251b, 1851b]). Each participant can sit randomly
in any car seat with different motion status such as sitting still, talking with each other, making hand/head
gestures, etc. The training and testing data may have different persons sitting in the same car seat and different
occupancy combinations for multi-person scenarios. Some persons in the testing data are never seen during
training. Each car location of indoor1-3 and outdoor1-2 is corresponding to 1 evaluation scenario, and other car
locations contain 10 evaluation scenarios such as kids in the car, back seats fold down, front seats moved, etc. We
run 5-fold cross-validation, leave-one-out test of unknown car locations, and stress test of unknown scenarios.
We also run evaluations to investigate the impact of different factors including number of training car locations,
number of UWB nodes, UWB node locations, round robin transmission, and unseen persons.

CIR data of indoor1, 2, 3, and outdoor1, 2 are used for 5-fold cross-validation and leave-one-out test, and other
CIR data are used for stress test, as shown in Fig. 10. For 5-fold cross-validation, CIR data of indoor1, 2, 3, and
outdoorl, 2 are randomly partitioned into 5 sets. Each set is used for validation, and the remaining sets are
used for model training to find the model architecture, training hypterparameters, and learning parameters. For
leave-one-out test, each car location of indoor1, 2, 3 and outdoorl, 2 is for testing and the others are for training
and validation. In this case, the car locations of test data are unknown for the trained model. For stress test, a
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Table 2. Summary of Evaluation Scenarios for Leave-One-Out Test and Stress Test
. - . Trained  Testi # In- # Per- . . A
Section Training Locations? rame 2 esting 1 < Testing Scenario verage
Model® Location stances  sons Accuracy
Section 4.2 . .randomly split training data
indoorl, 2, 3, m, k = about into 5 sets, each set used for
5-Fold Cross- random 3299 Oto4 . 99%
. outdoorl, 2 1,...,5 l—J validation and the 4
Validation > . .
remaining sets for training
indoor2, 3, outdoorl, 2 M; indoor1 508 0Oto1l car parked horizontally 97%
Section 4.3 indoor3, outdoorl, 2 M, indoor2 741 0to4 car parked vertically 91%
Leave- Oﬁe- indoor2, outdoorl, 2 M, indoor3 630 Oto4 car parked diagonally 97%
. ti
Out Test of indoor2, 3, outdoor2 M,y outdoor1 519 Oto4 Sometmes p ersons/cars 94%
moving around
Unknown Car -
Locations sometimes persons/cars
indoor2, 3, outdoor1 Ms outdoor2 901 0Oto4 moving around; 2 SUVs on 94%
the left and right of the car
indoor4 718 Oto1l 1 backpack/box in each seat 90%
indoord 670 0to 1 1 baby s‘eat or water bottle 89%
in each seat
1 or 2 kids (6Yr old, 50in
Section 4.4 indoor4 310 0to3  height, 45-551bs welght? in 83%
Stress Test of back seats, w/ or w/o driver
indoor2, 3, outdoorl, 2 M, indoor4 738 0to4 front left window is open 84%
Unknown - -
Scenarios indoor4 761 Oto4 all windows are open 86%
indoor4 734 Oto4 driver seat is pushed back 87%
indoor4 745 Oto4  front seats are pushed back 80%
indoor4 204 Oto2 back seats are fold down 76%
outdoor3 736 0to4 car engine is on 96%
outdoor4 354 1to4  caris driving in low-speed 92%
i f f
Section 4.5 indoor2,3, outdoor1,2  My—Ms All All Oto4 1mP§ct © numbe.r © 73%-95%
training car locations
Section 4.6 indoor2,3, outdoor1,2 My—Ms All All 0to4 impact of number of nodes  63%-95%
. . indoors5, .
Section 4.7 indoor2,3, outdoor1,2 M, oot All Oto4 impact of unseen persons  75%-96%
outdoor1,5
. . I-ti tati t:
Section 4.8 indoor2,3, outdoor1,2 My All All Otoq |4 HImEcomputation cos N/A

system usage and time cost

! Data randomly splitted into 80%/20% for training/validation. 10 epochs for 5-fold cross-validation, 100 epochs for leave-one-out/stress test.
2 Different trained models have the same neural architecture, but the learning parameters are different because of different training data.

model M, is trained by CIR data of indoor2, 3 and outdoor1, 2 and tested by 10 unseen scenarios for robustness
evaluation. In addition to unseen scenarios, stress test has 5 new participants that are not seen during training. For
both leave-one-out and stress tests, the training data is randomly partitioned into 80%/20% for training/validation.
We compare the proposed models, including SIMO, MIMO, and MaskMIMO, with a baseline CNN model similar

as C4S-C [20] in terms of accuracy, precision, recall, and F1 score.

Performance results of per-seat accuracy, average accuracy, precision, recall, and F1-score of k-fold cross-
validation, leave-one-out, and stress tests are shown in Section 4.2, 4.3, and 4.4. Section 4.5 shows the impact
of number of training car locations, and Section 4.6 presents the impact of number of UWB nodes, UWB node
locations, and round robin transmission. Section 4.7 shows evaluation results of the impact of unseen persons.
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(Section 4.3), (c) stress test of unknown scenarios (Section 4.4).

Section 4.8 shows evaluation results of real-time computation cost including system usage and time consumption

of CarOSense running on different platforms.
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Fig. 11. Accuracy, precision, recall, and F1 score of 5-fold cross-validation.

One of our goals is to get accurate and robust results for a large set of untrained scenarios with the model
trained by a small set of training data. So only the data from indoor1, 2, 3, and outdoorl, 2 are used for 5-fold
cross-validation, and other data of 10 scenarios are only used later in the stress test. Evaluation results of accuracy,
precision, recall, and F1 score of 5-fold cross-validation are shown in Fig. 11. The error bars in Fig. 11 and all
the following bar graphs represent standard deviation of performance scores. SIMO, MIMO, and MaskMIMO
have higher than 99.9% values for all the 4 performance metrics. The accuracy of the baseline CNN is about 84%.
Fig. 11b shows the precision-recall curve for the trade-off between precision and recall for different thresholds. A
high area of the regions under the curve represents both high recall and high precision, wherein high precision
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means a low false positive rate, and high recall represents a low false negative rate. The shaded area represents
the upper and lower bounds of statistical performance results. The baseline CNN has the lowest score and the
largest shaded area, which means that it has less stable/robust performance than other models.

4.3 Leave-One-Out Test of Unknown Car Locations
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Fig. 12. Multi-task confusion matrix and histogram of occupancy counting error for leave-one-test of unknown car location.
The model is trained by indoor2, indoor3, and outdoor1 and tested by outdoor2.

Leave-one-out test is used to evaluate whether CarOSense is accurate for unknown car locations. Leave-one-out
test is conducted by testing pre-trained models on CIR data from unknown car locations that are not seen during
training. Fig. 12 shows performance results of a model trained by indoor2, indoor3, and outdoor1 and tested by
outdoor2. Note that indoor1 is not included in training since it has no more than one person while other car
locations have up to 4 persons. Performance results of when indoor1 is not included in training are almost the
same as when indoor1 is included in training. Fig. 12a shows the confusion matrix of misclassified states for
multi-task classification combinations, where 0 represents empty and 1 represents occupied by a person for each
car seat. For all misclassified states, no more than one car seat has classification errors. For example, 14% of "1110"
are misclassified as "0110", which means 14% of "driver seat occupied" are misclassified as "driver seat empty" and
all other car seats are correctly recognized. The histogram of occupancy counting errors for all the 16 occupancy
states is shown in Fig. 12b. 96% of test samples have no counting error, 2% have counting error of 1 person, and
no samples have error larger than 1 person.

Performance results of different models are shown in Fig. 13. The accuracy, precision, recall, and F1 score
are 60%, 73%, 60%, and 59% for baseline CNN and higher than 92% for other models, as shown in Fig. 13a.
Precision-recall curves are shown in Fig. 13b with baseline CNN having the lowest area under the curve and the
largest shaded area between lower/upper statistical bounds. This means SIMO, MIMO, and MaskMIMO are much
more accurate, robust, and stable than baseline CNN.

Fig. 14a shows the average accuracy of SIMO, MIMO, and MaskMIMO for leave-one-out test. The average
accuracy of MaskMIMO is 94.6%. The gap between MaskMIMO and SIMO/MIMO and between different car
locations is not very big, which indicates that all the three models provide accurate and robust classification
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Fig. 13. Accuracy, precision, recall, and F1 score of leave-one-out test of unknown car locations.
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Fig. 14. Accuracy of leave-one-out test of unknown car locations.

results for unknown car locations. The baseline CNN has 90% accuracy only for indoor1 with no more than 1
person in the car, and its accuracy drops below 70% for other car locations of multi-person scenarios. Fig. 14b
shows the accuracy results of per-seat classifications of MaskMIMO. Different car seats have similar per-seat
accuracy for indoorl, 3, and outdoorl, 2. For indoor2, the accuracy of the back left seat is lower than 80% while
all the other three seats have accuracy higher than 90%.

4.4 Stress Test of Unknown Scenarios

Stress test is used to demonstrate that CarOSense is robust for unknown scenarios. Stress test has not only
unknown car locations but also unseen car states. For stress test, the pre-trained model is trained with CIR data
of indoor2, 3, and outdoorl, 2 and tested by a new car location with 10 unseen scenarios, such as front seats
pushed back, back seats fold down, and kids (6Yr old, 50in height, 45-55lbs weight) in back seats, that are not
seen during training. Fig. 15 shows the accuracy, precision, recall, and F1 score of different models for stress test.
Compared with 5-fold cross-validation and leave-one-out test of unknown car locations, all models have lower
scores for stress test because of not only unknown car locations but also unseen and changed car states. Scores
of baseline CNN drops below 56%, and MaskMIMO still provides relatively high scores of higher than 87%, as
shown in Fig. 15a. Stress test is much more challenging than 5-fold cross-validation and leave-one-out test, so all
models have wider range of lower/upper statistical bounds for the precision-recall curve, as shown in Fig. 15b.
Fig. 16a shows the average accuracy of SIMO, MIMO, and MaskMIMO for stress test. The average accuracy of
stress test is 8% lower than that of leave-one-out test. This is because leave-one-out test only has unknown car
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Fig. 15. Accuracy, precision, recall, and F1 score of stress test of unknown scenarios.
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Fig. 16. Accuracy of stress test of unknown scenarios.

locations while stress test has not only unknown car locations but also unknown car states. For most scenarios,
MaskMIMO has higher accuracy than SIMO and MIMO. The average accuracy of MaskMIMO for stress test
is 87.0%. This means that CarOSense is robust for new unseen scenarios. SIMO has the lowest accuracy and
is not robust for some unknown scenarios. For example, the average accuracy of SIMO is 64%, 65%, and 59%,
respectively, for baby seat or water bottle in each seat, front seats pushed back, and back seats fold down, which
is only slightly better than the naive method with random guessing.

Evaluation results of per-seat accuracy of MaskMIMO are shown in Fig. 16b. First, stress test has the lowest
accuracy when back seats are fold down. In this case, the multi-path environment is changed dramatically: signal
reflections from back seats do not exist anymore, and signals between the node in the trunk and other nodes are
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changed from None Line of Sight (NLoS) to Line of Sight (LoS). MaskMIMO has an average accuracy of 76% in
this case, so it is robust for dramatic changes of car states. Second, unlike leave-one-out test, per-seat accuracy
could be very different for different car seats and for different scenarios. For example, when the driver seat is
pushed back, left seats have much lower accuracy than the other two seats. The reason is that multi-path signal
reflections of the left side of the car are very different from the training data because of the movement of the
driver seat. The accuracy of the back right seat is lower than 70% when there are kids in back seats. The kids
are reading books in back seats, so there are almost no body movements. Besides, the kids have much smaller
body shape than adults. So signal reflections from back seats are different for training and testing data. Since the
model is trained by CIR data of only adults, it gives low accuracy for back seats when there are kids in back seats.

4.5 Impact of Number of Training Car Locations
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|9} |9}
> >
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(a) Impact of number of training car locations (b) Impact of number of UWB nodes

Fig. 17. Impact of number of training car locations and number of UWB nodes.

Fig. 17a shows the impact of number of training car locations on average accuracy for leave-one-out and stress
tests. For leave-one-out test, the average accuracy is 95%, 87%, and 82%, respectively, for 3, 2, and 1 training car
locations. For stress test, the average accuracy is 87%/84%/81%/73% for 4/3/2/1 car locations used during training.
This means CarOSense is robust in terms of different car locations and does not require a lot of training data from
different car locations. For example, the average accuracy is already higher than 80% when the model is trained
using only 2 car locations: 87% for leave-one-out test and 81% for stress test. This reduces the human efforts for
data collection and model training.

4.6 Impact of Number of UWB Nodes and Node Locations

The impact of number of UWB nodes for leave-one-out test and stress test is shown in Fig. 17b. The model is
trained and tested with a certain number of UWB nodes. The final accuracy is calculated by the average of all
the possible combinations of different node locations. Fig. 17b shows that the number of UWB nodes has a big
impact on average accuracy. The average accuracy of leave-one-out/stress test is 95%/87% when there are 8 UWB
nodes. It drops to 82%/80% for 6 UWB nodes and further drops to 66%/63% when there are only 2 UWB nodes.
Fig. 18 shows the average accuracy of different node locations when there are 2, 4, and 6 UWB nodes. Labels in
Fig. 18 represent which nodes are selected. For example, "1_3" in Fig. 18a means CIR data of node 1 and 3 are used
for model training and testing. There is no big difference for the average accuracy of different node locations,
which means CarOSense is robust for different UWB node locations. Another factor that influences the accuracy
is round robin transmission, as shown in Fig. 19. With round robin, the transmitter is changed to receiver and
the next node is changed to transmitter periodically. Without round robin, the transmitter and receivers are not
changed. Round robin transmission provides more information about the multi-path environment inside the car,
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Fig. 18. Impact of UWB node locations for stress test of unknown scenarios.
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Fig. 19. Impact of UWB transmission with or without round robin.

so it has higher accuracy than when there is no round robin. For example, as shown in Fig. 19b, when there are 6
UWB nodes, the average accuracy with round robin of stress test is 79% which is 10% higher than that without
round robin. The CIR tensor size with and without round robin is (6, 5, 10, 101) and (1, 5, 10, 101), respectively.
Round robin transmission provides 6 times of multi-path features compared with when there is no round robin,
so the model trained with round robin is more robust for stress test of different unknown scenarios.

4.7 Impact of Unseen Persons

Table 3 shows evaluation results of the impact of unseen persons. For single-person scenarios, we collect additional
data for unseen person evaluation from three car locations, indoor5, outdoor1, and outdoor5. SIMO, MIMO, and
MaskMIMO give robust performance with average accuracy from 93% to 96% for unseen persons and unknown
car locations. For multi-person scenarios, MaskMIMO has an average accuracy of 87% for stress test with about
60% unseen persons, unknown car locations, and unseen car states. For unknown car locations with unseen kids,
the accuracy MaskMIMO is 75% which is 40% higher than that of the baseline CNN. The kids have much smaller
body shape than adults in training data, and MaskMIMO still provides relatively high accuracy. We also evaluate
the unseen person scenarios in real-time demo setup. We tested CarOSense in real time with 4 volunteers, who
are unseen to training data, with different body shapes (height: [170cm, 202cm]; weight: [1351b, 2001b]) and the
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Table 3. Impact of Unseen Persons

# Persons Testing Scenario Average Accuracy
car location ‘ person car state | Baseline SIMO MIMO MaskMIMO

. seen known 0.90 0.92 0.94 0.96
single-

unknown 100% unseen known 0.83 0.93 0.94 0.94

person 100% unseen  unknown | 080 093  0.95 0.94

seen known 0.68 0.89 0.93 0.94

multi- unknown 60% unseen known 0.54 0.87 0.93 0.94

person 60% unseen unknown 0.53 0.76 0.83 0.87

100% unseen kids unknown | 0.35 0.69 0.73 0.75

average accuracy is 90%. Therefore, CarOSense is robust for the combined effects of unseen persons, different
body shapes, unknown car locations, and unseen car states.

4.8 Real-Time Test of Computation Cost

Table 4. Computation Cost of Real-Time Demo

Operatin Inference | Inference System Usage Time per CIR Tensor (ms)

Platform P & . CPU Memory GPU | CIRPro-  Model

System Device | Framework . Total
Usage Usage Usage | cessing Inference
Laptop Windows 10, GPU TensorFlow | 6.3% 7.1% 0.1% 3 63 66
(MSIGS75 | 64-bit x86_64 CPU TensorFlow | 6.5% 0.9% N/A 3 75 78
Stealth | Ubuntu 18.04, GPU TensorFlow | 6.4% 8.6% 0.1% 4 109 113
9SG)' | 64-bitx86 64 | CPU | TensorFlow | 6.4%  12%  N/A 4 107 111
Google | Mendel Linux Edge TensorFlow | 25.4%  25.3% N/A 39 189 228
Coral Dev 4.0, 64-bit TensorFlow

Board? aarch64 TPU Lite 24.6% 6.0% N/A 39 21 60
Raspberry | Raspbian 10, pU iensorll::}ow 25.2% 5.2% N/A 24 131 155
Pi4® | 32-bit armv7l Mo l2s2%  12%  N/A 25 18 43

1 CPU: Intel 19-9880H @ 2.30GHz (8 Cores); RAM: 32GB DDR4 @ 2666MHz; GPU: Nvidia GeForce RTX 2080 Max-Q @ 990MHz
with 8GB GDDR6 VRAM @ 1500MHz [52].

2 CPU: NXP i.MX 8M SoC @ 1.5GHz (Quad-core Cortex-A53) plus Cortex-M4F; RAM: 1GB LPDDR4 SDRAM @ 1600MHz; Edge
TPU: Google Edge TPU ML accelerator coprocessor: 4 trillion operations per second (TOPS), 2 TOPS per watt [26].

3 CPU: Broadcom BCM2711 SoC @ 1.5GHz (Quad-core Cortex-A72); RAM: 4GB LPDDR4 SDRAM @ 3200MHz [21].

Table 4 shows the computation cost, including system usage of CPU, GPU and memory, and time consumption
of CIR processing and model prediction, of the real-time demo running on different platforms with different
inference devices and different inference frameworks. Model inference is implemented by the same TensorFlow
version for Windows and Ubuntu on the laptop. For Google Coral and Raspberry Pi, TensorFlow Lite is used as
the inference framework. For comparison of model size, accuracy, and inference time, TensorFlow is also used for
Google Coral and Raspberry Pi. CIR processing includes CIR data unpacking/decoding, CIR alignment, and CIR
normalization. For Google Coral and Raspberry Pi, memory usage and model inference time of TensorFlow are
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much higher than that of TensorFlow Lite. Using TensorFlow Lite as the inference framework, the total running
time is 60 milliseconds and 43 milliseconds, respectively, for Google Coral and Raspberry Pi. So the real-time
demo is practical for running on embedded devices with constrained resources.
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Fig. 20. Inference time per CIR tensor of different models running on different platforms with different TensorFlow versions.

Fig. 20 shows the inference time of SIMO, MIMO, and MaskMIMO on different platforms. For the laptop with
TensorFlow as shown in Fig. 20a, there is no big difference between CPU and GPU for both Windows and Ubuntu.
The reason is that developed models are lightweight (as per design goal) and do not benefit from having GPU
resources. For SIMO, the inference time of Ubuntu is about 50% higher than that of Windows. For MIMO and
MaskMIMO, Ubuntu has about 3 times of inference time as Windows. The inference time of different models
are similar for Windows. For Ubuntu, MIMO and MaskMIMO have much higher inference time than SIMO. The
high inference time for Ubuntu and the big gap between SIMO and MIMO/MaskMIMO on Ubuntu could be
because of different compilers and TensorFlow implementations. We leave the investigation and optimization
of the inference time of TensorFlow on Ubuntu as future work. Similar to Ubuntu on the laptop, MIMO and
MaskMIMO have much higher inference time than SIMO for both Google Coral development board and Raspberry,
as shown in Fig. 20b and 20c. Since TensorFlow Lite is optimized for mobile, embedded, and Internet of Things
(IoT) devices [27], it has much lower inference time than TensorFlow for different models on embedded devices.
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Fig. 21. Inference time, accuracy, and model size of different models and different TensorFlow versions on embedded devices.

Fig. 21 shows a comparison of model size, accuracy, and inference time of different models using TensorFlow and
TensorFlow Lite on embedded devices. TensorFlow Lite significantly reduces inference time without sacrificing
classification accuracy compared with TensorFlow. The mode size of TensorFlow is 850KB, 5.2MB, and 48.9MB,
respectively, for SIMO, MIMO, and MaskMIMO. TensorFlow Lite uses the same pre-trained model as TensorFlow
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and converts it to a smaller model by a converter function [27]. The model size of TensorFlow Lite is 256KB,
1.6MB, and 16.1MB, respectively, for SIMO, MIMO, and MaskMIMO, which is about 1/4 of the size of the same
model of TensorFlow. Because of smaller model size and library size, TensorFlow Lite has much lower inference
time than TensorFlow. At the same time, TensorFlow Lite provides the same accuracy as TensorFlow. For example,
MaskMIMO has inference time of 75 and 323 milliseconds, respectively, for TensorFlow Lite and TensorFlow, and
the same average accuracy of 89.6% for both inference frameworks, as shown in Fig. 21b.

5 RELATED WORK

5.1 Car Occupancy Sensing
Table 5. Related Work on Car Occupancy Sensing
Reference Input Algorithm Application Testing Method Performance
Multi-Task In-Vehicle Occupancy 1313 samples, k-fold  occupancy counting
C45-C[20]  Thermal Image CNN Detection/Counting cross-validation accuracy: 91%
TI- mm-Wave Range-angle Rear-Seat Animated lab and car setu detection error:
AWR1642 [32] FMCW Radar heatmap Occupancy Detection P 0.3%/0.2% (lab/car)
Xu-2020 [73] Wi-Fi CSI Markov Chain, In-Vehicle OFcupancy up to 4 sub].ects, 1 occupancy counting
DP Counting scenario accuracy: 81%
On-Board Door In-Vehicle Occupancy . .
Luo-2017 [47] Motion Sensor Sequencing Detection/Counting Matlab simulation N/A
Zangl- Capacitive Electric Field  In-Vehicle Occupancy laboratory
. . . . N/A
2008 [77] Sensor Signal Spectra Classification experiments
Sterner- Electromagnetic Signal In-Vehicle Occupancy Finite Element N/A
2012 [63] Wave Reflection Detection Method (FEM)
Delphi . Front-Seat
PODS [28] Weight Sensor N/A Occupancy Detection N/A N/A
Hyundai- Rear-Seat Occupancy
Kia [4, 37] Ultrasound N/A Detection N/A N/A
In-Vehicle Occupancy
Others [38] RF, Radar, etc. N/A ) N/A N/A
Detection
8 car locations, 15 accuracy:
CarQOSense Ultra- Multi-Task In-Vehicle Occupancy i(;zrsls_r:,;)i’ dl;t;zlj ?cgrzz;s/—gjazllzf’sjo(r)j
(our design) Wideband CNN Detection/Counting ’

leave-one-out/stress
test, 9269 samples

leave-one-out/stress
test)

Occupancy information provides important input signals for applications such as adaptive control of heating,
ventilation, and air-conditioning (HVAC) systems. Occupancy sensing helps enable and/or enhance applications
such as resource allocation, energy saving, safety, security, and human-machine interaction. It can also be used to
trigger other applications such as human identification, activity recognition and tracking. Recent car occupancy
sensing solutions focus on weight sensors [28], cameras [20], ultrasound [4, 37], and Radars [10, 32, 46]. Examples
of available technologies for in-vehicle occupancy sensing can be found at [38]. Table 5 shows a summary of
related works on car occupancy sensing using different signals. Luo et al. presents in-vehicle occupancy detection
and counting based on sequencing of door opening/closing and weight difference compared with the empty car.
However, this method only works when the vehicle is remotely started and cannot distinguish which seat is
occupied. Weight sensors are not accurate enough to identify between animate/inanimate objects. Moreover,
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weight sensors have not been adopted for rear seats because of additional cost, immature rear airbag deployment
techniques, wiring/harness maintenance and reconfiguration constraints. C4S-C [20] uses a thermal imaging
camera and a multi-task CNN for in-vehicle occupancy detection and counting. However, thermal camera solution
is very cost prohibitive. At the same time, we also applied a baseline CNN similar as C4S-C [20] for UWB-based
car occupancy sensing, but it has less than 55% accuracy for unseen scenarios since it is designed for images but
not for UWB data. RGB color cameras can be potentially used for in-vehicle occupancy sensing, but camera-based
solutions have privacy issues [61] and are sensitive to lighting conditions. Ultrasound is used for detecting
movements in rear seats for some vehicles [4, 37], but ultrasound techniques have performance limitations and
are not pet friendly when frequencies used are less than 80kHz [14, 70]. UWB signals are not in the hearing range
of animals and have extremely low power [58], so UWB sensing is harmless for humans and animals. Texas
Instruments uses Radar to detect life forms including adults, children, and pets in vehicles with a field of view of
+60 degrees [32]. Radar requires high bandwidth and multiple antennas which translate to high cost and power
consumption [10, 46]. Moreover, all of these solutions incur additional dedicated hardware and installation cost
of wires/cable harness, as they are not available as standard offerings in a car.

5.2 In-Vehicle Sensing

Fridman presents seven principles of effective shared autonomy, such as human sensing, shared perception-control,
and deep personalization, for Human-Centered Autonomous Vehicle (HCAV) Systems [23]. In-vehicle sensing
about the driver, passengers, and vehicle is an important component to follow and implement the principles for
HCAV. Table 6 shows a summary of algorithms, applications, testing methods, and performance of in-vehicle
sensing using different signals. An overview of the best practices and recent advances of in-vehicle sensing
is given in [57]. Kim et al. present driver facial activity recognition with a camera and multi-task CNN [39].
Camera-based in-vehicle sensing has privacy issues and is sensitive to lighting conditions. Sleeper et al. present a
survey on the perceptions of vehicle-based sensing and recording from 364 participants [61]. The survey shows
that most people are concerned about the comfort and privacy of vision-based sensing and recording. Participants
tend to feel more comfortable with privacy preserving sensing technologies. Chuang et al. presents driver head
posture recognition using wearable motion sensors and Hidden Markov Model (HMM) [12]. Wearable-based
solutions are not contactless and require users wearing sensors at specific locations.

Recently, wireless signals are widely used for sensing purposes and could be a potential solution for privacy
preserving and contactless in-vehicle sensing. Smith et al. propose driver gesture recognition with Frequency-
Modulated Continuous Wave (FMCW) Radar and Random Forest [62]. Impulse Radio Ultra-Wideband (IR-UWB)
Radar is used for vital sign monitoring of drivers [44] and multiple targets in vehicles [76]. Radar can also
be used for in-vehicle occupancy detection [32]. Radar-based solutions require dedicated sensing hardware
thereby introducing additional installation cost. Xie et al. propose ViHOT for head tracking using Wi-Fi signals
in vehicles [71]. WiCAR [68] and WiDriver [17] use Wi-Fi for driver activity recognition. WiBot uses Wi-Fi to
detect head and arm movements of drivers [55]. Melgarejo et al. use Wi-Fi RSSI and phase for hand gesture
recognition in vehicles [50]. Wi-Fi CSI is used for in-vehicle occupancy counting and respiration monitoring
in [73]. RFexpress uses RF RSSI for driver emotion recognition [56]. RF-CAR uses RFIDs with CNN and domain
adaptation for driver activity recognition [69]. CarOSense uses UWB as the sensing modality, which has higher
spatial resolution than Wi-Fi and RFIDs. BreathListener [74] uses Energy Spectrum Density (ESD) of acoustic
signals to monitor breathing patterns of drivers. SteerTrack [75] is a device-free approach for tracking the rotation
angle of steering wheel using audio signals on smartphones. Acoustic sensing is not pet friendly for frequencies
less than 80kHz [14, 70]. UWB sensing does not have this issue because the carrier frequency of UWB signals is
not in the hearing range of humans and animals. UWB sensing is also harmless because of its extremely low
heating power and photon energy [58]. Moreover, acoustic sensing has very short range (< 1m) and usually
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Table 6. Related Work on In-Vehicle Sensing
Reference Input Algorithm Application Testing Method Performance
iy . . .. . . accuracy: 89% (3
Kim-2019 [39] RGB Multi-Task ~ Driver Fac1a'1 Actwlty driving su'nulator, facial behaviors), 93%
Camera CNN Recognition 12 subjects .
(3 driver statuses)
Wear.able Hidden Driver Head Posture lab/car (n=125/ accuracy: 100%/99.2%
Chuang-2015 [12] Motion .\ 122), 5-fold
Markov Model Recognition 1o (lab/car, 6 postures)
Sensor cross-validation
Smith-2018 [62] FMCW Random Driver G.esture 2 gestur.e sets, 8 accuracy: >90% (3
Radar Forest Recognition subjects gestures)
IR-UWB - Driver Vital Sign 7 motion cases, 5 error: 0.5/1.3 bpm
Leem-2017 [44] Radar Data Fitting Monitoring subjects (breathing/heart rate)
IR-UWB Variational In-Vehicle .Mult.1 ple driver only, driver  heart rate accuracy:
Yang-2018 [76] Mode Decom-  Targets Vital Sign
Radar . o and 1 passenger  93%/ 88% (1/2 targets)
position Monitoring
. . driving simulator,
RFexpress [56] RF RSSI kNN Driver 'Em.otlon 8 subjects, 10-fold accuracy: 82.9% (3
Monitoring A emotions)
cross-validation
Melgarejo- Wi-Fi RSSI KNN. DTW In-Vehicle Hand 5-fold accuracy: 89% (14
2014 [50] and Phase ’ Gesture Recognition  cross-validation gestures)
. - DTW, Pattern . . various practical median error:
1 -
ViHOT [71] Wi-Fi CSI Matching Driver Head Tracking scenarios £-10° (3 drivers)
WiCAR [65] Wi-Fi CSI CNN, DoI.nam Driver A?t.wlty 64 dlﬂefent accuracy: ?4.3% 8
Adaptation Recognition domains activities)
.. Driver Posture . accuracy: 96.8% (11
WiDriver [17] Wi-Fi CSI Finite Recognition and 0% tramhlng, 10% postures), 90.76% (8
Automata . . testing .
Motion Detection motions)
. 10-fold accuracy: 94.5% (head
WiBot [55]  Wi-mcsl v Pattem o Drver Head/Am oo gation vs. arm), 90.5% (5
Matching Motion Recognition .. .
40 participants motions)
Markov Chain, In-Vehicle Occupancy b to 4 subiects. 1 counting: 94%-71%,
Xu-2020 [73] Wi-Fi CSI Dynamic Counting/Breathing P scenarjio ’ breathing: 96%-77%
Programming Rate Estimation (1-4 persons)
RF-CAR [69] RFID CNN, Dorpam Driver Agt}v1ty 64 dlffe.rent accura.cy./: .95% (8
Adaptation Recognition domains activities)
BreathListener [74] Acoustic on GAN Driver B?eath.mg Rate 10 drivers, 10 error: 0.11bpm
Smartphone Estimation smartphones
Acoustic on Cross- Steering Wheel 5 drivers, 5 steering tracking
SteerTrack [75] Smartphone  Correlation Tracking smartphones error: 4.61°

focuses on only the driver. Our target is per-seat occupancy which focuses on not only the driver but also
passengers, and CarOSense works for both single- and multi-person scenarios.

UWSB is coming to vehicles for keyless entry [15, 33, 43, 67], personal devices for spatial awareness [5],
and industrial plants for asset tracking [13, 19]. For example, UWB is used for indoor positioning [3], liquid
sensing [16], and in-vehicle ranging [54]. Sachs gives a review of the basics, potentials, and applications of UWB
sensing [58]. We use the UWB keyless infrastructure for a new application, i.e., per-seat car occupancy sensing.
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We demonstrate that UWB and deep learning models can be used for per-seat car occupancy sensing that is
accurate and robust in different unknown scenarios and efficient to run on embedded devices.

Multi-sensor fusion is another interesting area to explore as in principle it should improve the robustness
of the system. This can be achieved by adding additional sensors or utilizing other already available sensing
modalities in the car. Augmenting CarOSense with additional sensors will increase the cost of the overall system,
while utilizing other already available sensors requires timely access to the sensor data. Currently, in a real-world
practical scenario, sensors in a vehicle are provided by different vendors, which may or may not even share the
same wired/wireless network. This creates a major limitation as the timely data access and actuation for a given
sensor cannot be guaranteed. We leave the development of the multi-sensor fusion solution as future work.

6 CONCLUSION

UWRB is coming to personal devices and cars for communication and sensing purposes. An example of sensing
applications is using UWB for keyless entry for cars. In this paper, we demonstrate the feasibility of reusing the
UWSB keyless infrastructure for per-seat car occupancy sensing as an alternative to dedicated solutions based on
weight sensors, cameras or radars. The automotive indoor environment is small with rich multi-path and very
variable with moving seat positions, animate/inanimate objects at different locations (on seat, car floor, or in
trunk), etc. It is impractical to train a model with all possible cases, which makes this problem more challenging.
We first run experiments and show that standard machine learning algorithms have low accuracy for untrained
scenarios such as unknown car locations, front seats moved, back seats fold down, etc. To address this issue, we
propose CarOSense for accurate, robust and cost efficient (low training effort and lightweight implementation)
per-seat occupancy sensing reusing the UWB keyless infrastructure. CarOSense uses a new deep learning model,
MaskMIMO, to learn spatial/time features by 2D convolutions and per-seat attentions by a multi-task mask.
We implement CarOSense as a cross-platform demo and evaluate it in different testing scenarios. Evaluation
results show that CarOSense is accurate and robust for different scenarios: 94.6% average accuracy using 8 UWB
nodes (77.3% using 4 nodes) for leave-one-out test of unknown car locations, and 87.0% average accuracy using
8 nodes (69.4% using 4 nodes) for stress test of unseen scenarios. We also demonstrate that CarOSense has
low computational resource requirements and can run smoothly in real-time on embedded devices. The CIR
processing and model inference is 128 milliseconds for Google Coral and 86 milliseconds for Raspberry Pi.

Car manufactures can use CarOSense to provide rear seat belt reminder for additional safety ratings without
introducing dedicated sensing hardware. This can substantially reduce fatalities for rear seat occupants, as
unbelted rear seat occupants are twice likely to die in vehicle crash as compared to belted ones [8]. Another
safety application is providing occupancy information for air bag control for rear seats. It can also assist in
providing better personalized experience for driver and passengers by adjusting climate and audio control as per
occupancy. We believe CarOSense is the first step and it could open up new opportunities for in-vehicle sensing.
CarOSense can also be used in combination with other potential in-vehicle sensing modules to provide more
accurate and robust performance. Assisted by new deep learning models, CarOSense can be used for other tasks
such as occupancy classification and human activity monitoring.
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